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Abstract

Toward Consistent Robotics Simulation Through Validation

Multi-rigid body dynamics simulation supports design, prototype, test, and evo-

lutionary stages of robotic development. However, the reliability of simulating tasks

critical to robotics, i.e. grasping and locomotion, remains low and represents a barrier

to future robotics applications. A lack of simulation reliability is typically exhibited

by a simulated robot performing a task while under similar conditions the real system

fails to perform that same task. Simulations that are not reliable may mislead roboti-

cists into costly, infeasible designs or give false safety assurances of systems where

safety is paramount, e.g. autonomous vehicles. Roboticists therefore need assurances

that simulation will either consistently predict real performance or indicate that it

can not make sound predictions. General software engineering proposes verification

and validation as practices for quality assurance. In simulation software, verification

checks that implementation is consistent with theory, and validation checks that sim-

ulation is consistent with real behaviors. While verification is critical, validation is

necessary to objectively demonstrate simulation consistency.

This thesis studies validation of multi-body rigid body dynamics simulations with

contact and friction in an effort to improve the state of the art in robotics simula-

tion. This work identifies scenarios relevant to robotics tasks, examines simulators

performing these tasks, and identifies ways that current simulators should be used

and future simulators should be improved. Additionally, this work identifies temporal

consistency as a critical requirement for robotics simulators, proposes a temporally

consistent simulator architecture, and studies the performance difference between

temporally consistent and existing robotics simulators. Finally, this work studies the

motion of a minimally simple, yet still sophisticated, real world robot that we can

model and examines a means to validate simulation of the robot.
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Chapter 1- Introduction

This thesis examines validation as a means to improve the predictive consistency

of robotics simulation. This examination is carried out using a number of scenarios

and metrics relevant to robotic systems and relies on comparisons between simu-

lations to draw conclusions. This work demonstrates how validation can facilitate

assessment of the algorithms, models, and architectures used in robotics simulation,

identifies temporal consistency as a requirement for robotics simulation and describes

a temporally consistent architecture, and proposes a validation approach that accom-

modates complex robotic systems and allows for fair comparisons among simulations.

This work also provides a comprehensive study of data collection and simulation val-

idation involving a real world robot and provides this data for the validation of other

simulators.

Brooks and Mataric [9] define three abstract yet fundamental problems associated

with robotics simulation:

1. Simulations are doomed to succeed

2. Simulations cannot be made sufficiently realistic

3. Many simulation artifacts do not exist in the real world

The first point argues that a simulation can be made to produce a plausible result,

but simulated behavior may not predict real system behavior. For example, simu-

lation of a robot may produce a walking or climbing behavior where the real robot

falls instead [69]. The second point argues that simulations rely on models which are

approximations based on provisional physical understanding and technological limi-

tations. For example, robotic simulators model volumes as unbreakable, rigid bodies

to facilitate fast computation, yet volumes composed of physical matter are not un-

breakable. The third point is an observation that physical laws cannot be violated

in the real world; however, unrealistic behaviors will arise in simulations due to the
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second point. For example, simulated rigid bodies may interpenetrate one another,

i.e. occupy the same volume, where solids in the real world cannot occupy the same

volume. In spite of these problems, roboticists rely on simulation to design, model

and predict the performance of robots participating in interactive tasks.

Robotic applications are primarily interactive in nature. An ultimate goal of

robotics is to safely assist humans performing physical tasks in human environ-

ments [62]. For a robot to be a fully cooperative partner, a robot must be able

to move through the environment, i.e. locomotion, and manipulate objects in the

environment, i.e. grasping, without failure. Locomotion and grasping are contingent

upon contact and the resultant friction forces; therefore, robotics requires simulations

that model contact and friction consistent with the contact and friction experienced

by real systems. Unfortunately, simulations involving contact and friction have not

been demonstrated to be consistent enough with reality to be reliably predictive.

Realism might be represented as a continuum ranging from unrealistic to realistic,

refer to Figure 1, and every simulator exists somewhere along this continuum. Closer

to the unrealistic end of the continuum lies a point where simulation is realistically

plausible while closer to the realistic end lies a point where simulation is qualitatively

predictive. Realistically plausible simulations are visually convincing to users, but

plausible simulations do not necessarily model or simulate a real system with enough

fidelity to predict real performance with a reasonable amount of accuracy. Plausible

simulations often avoid modeling some aspects that are non-trivial considerations or

they substitute simplified, unrealistic models for complex computations to guarantee

real-time performance. Qualitatively predictive simulations do not provide perfect

fidelity but the results that they produce are qualitatively similar enough to real

world system performance that simulated behaviors are indistinguishable at a high

level from and consistent with real world behaviors. Realistically plausible simula-

tions may have no more predictive value than random guessing while qualitatively
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predictive simulations should produce feasible predictions. Decisons made by the sim-

ulator developer, such as selection of models, selection of simulation paradigm, and

amount of real-time optimization, generally determine where along the continuum

the simulation falls.

Figure 1: Continuum of Simulation Realism

Plausible marks the point on the continuum where simulation has apparant realism, i.e.
quasi-realism. Apparant realism can mislead users to believe that simulation is realistic
while the predictive value may be no better than a random guess. Predictive marks the
point on the continuum where simulation is accurate enough, i.e. pseudo-realistic, for
viable prediction.

Adding a real-time requirement to simulation constrains how realistic the simula-

tion may be. A currently accepted approach to modeling and simulating a large class

of robotic systems is multi-rigid body dynamics. Multi-rigid body dynamics is the

extension of rigid body dynamics to actuated, articulated systems. Rigid body dy-

namics has been proven to be consistently predictive for modeling ballistics and space

flight, and rigid body dynamics has also proven to be fast enough to operate at real-

time on current hardware as demonstrated by computer gaming simulations. These

two statements suggest that multi-rigid body dynamics is both fast enough and accu-

rate enough for robotics simulation, but there are enough differences between these

application domains that multi-rigid body dynamics robotics simulations have not

been proven to be qualitatively predictive. For example, simulations of ballistics and

space flight are able to ignore contact, and computer gaming simulations avoid contact

and friction by generating plausible locomotion through animation using precompted

trajectories and plausible grasping through fixing objects to an end effector. Game

simulations generally use first order integrators that compute approximate solutions,
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i.e. forces, velocities, and positions, and integrate dynamical equations using a large

time step. Reformulation of differential equations might avoid computational stiffness

and potential, obvious instabilities that might develop in the simulation. Regardless,

solution approximation introduces error that accumulates over the course of the en-

tire simulation, and while the simulation appears to produce a plausible result, the

accumulated error may reduce that simulation’s predictive value. Game simulations

may also introduce arbitrary parameters, e.g damping, restitution, and contact pa-

rameters, to maintain plausibility that cannot be measured from a real system and

might not fit any accepted physical model. Multi-rigid body dynamics is attractive to

roboticists because it is demonstrably real-time and requires relatively little system

identification investment, but an open question remains as to whether there exists a

multi-rigid body dynamics simulation that is consistent enough to be qualitatively

predictive for simulations involving contact and friction.

Verification and validation are proposed means to assess the quality of simulation.

The definitions and roles of verification and validation for simulation were formalized

by committee agreement [56], refer to Figure 2. Informally, verification is checking

that the implementation matches mathematical models and validation is checking the

fidelity of a simulation.

Verification is a bottom-up approach to assessing simulation, which is based on

the assumption that if all of the foundational models are correct, then errors in the

system will be reduced. Verification does eliminate errors and inconsistencies in sim-

ulation, but analysis of models alone does not establish that a simulation as a whole

has sufficient fidelity to be qualitatively predictive. A model may simply not capture

all targeted phenomena and therefore may not be qualitatively predictive, so verifi-

cation of that model may have no effect on the realism of the simulator. Verification

is also only capable of assessing what is implemented but a model necessary for pre-

dictive simulation might be omitted from the system, so verification can not be relied
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Figure 2: Formal Relationships Between Verification and Validation

The formalized diagram [56] defining the relationships and roles of simulation verification
and validation. The inner arrows describe the processes which relate the elements to each
other, and the outer arrows refer to the procedures which evaluate the credibilty of these
processes.

upon to identify the absence of a model. Simulation is composed of a large num-

ber of individual physical models which must interact, and verification alone can not

address whether the interactions between physical models has sufficient fidelity. For

example, boundary modeling interacts with contact modeling, which interacts with

friction modeling. Friction model verification assesses the correctness of the friction

model implementation with respect to theory but does not assess the correctness of

the friction model with respect to its dependency on boundary and contact model

implementations.

Validation is a top-down approach to assessing simulation which is based on the

assumption that comparing simulation outputs with experimental outputs gives an

overall measure of the consistency between outputs. Validation alone cannot improve

simulation because it does not directly identify the cause of differences between two

outputs. However, if simulation is validated against real world physical experiments,

measuring the fidelity of a simulation and its predictive capacity appears to be feasible.
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Validation allows for the comparison of any experimental data against simulated

data. To evaluate whether a simulation has sufficient fidelity, data from real world

experimental studies is required. However, acquiring data from real world experiments

can be problematic because not all experimental data is publicly available. Not all

real world experiments are usable because many experiments do not focus enough on

particular phenomena relevant to robotics and where roboticists suspect a simulation

may not have sufficient fidelity. Because validation represents an analysis of the

aggregate system behavior, it is difficult to identify individual components or models

as sources of error within complex systems which may lead to misinterpretation.

Different sources of error may also cancel each other out in particular scenarios so

that a system may pass a set of validation tests[49]; however, these sources of error

may still contribute error that is not cancelled in other contexts or scenarios. Real

world experimental scenarios that are useful should be designed with the intent to

focus study on a limited number of aspects. Identifying and measuring these scenarios

can prove difficult in and of itself.

Rigid body dynamics is subject to the interaction of a number of phenomena that

can not be isolated in physical tests, i.e. contact and friction, and surface variances are

difficult to fully identify and parameterize; therefore, real world experiments intended

for rigid body dynamics validation scenarios are difficult to develop and measure. Real

world scenarios that have been studied for rigid body dynamics validation include the

study of collisions between a steel bar and a surface [65], the motion of ball bearings

on a spinning plate [42], and the contact of ball bearings dropped onto a plate [60].

While real data is critical to identifying whether simulation has sufficient fidelity,

validation is not limited to using data gathered from real world experiments. Because

validation is a comparative approach to measuring consistency, validation can also be

performed between the output of simulations to determine how consistent simulations

are with one another. If many simulators are demonstrated to consistently simulate
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the same task and one of those simulators is demonstrated to have sufficient fidelity,

then it is reasonable to infer that all those simulators have sufficient fidelity to be

qualitatively predictive. Regardless, comparisons between simulators is a necessary

verification practice for scientific applications [33] and can be valuable for hypotheses

testing of models applied in different simulators or for hypothesis testing of different

modes that may be supported by a single simulator.

Validation may also produce indirect information about a simulator that may

help researchers develop an intuition about why a simulation does not have suffi-

cient fidelity. Simulators are complex engineering systems that are constrained by

hardware and domain requirements which can lead to design compromises for better

performance, e.g. real-time requirements. Compromises built into the core of the

simulation architecture may be inherited by future generations of simulators without

sufficient re-evaluation of the impact on how these designs implicitly alter modeling

of the simulated systems. The bottom up approach of verification can not give any

information about these compromises and may only reinforce assumptions of correct-

ness. Validation may not directly expose these compromises, but validation may give

an indication that there is an error in the system that must be explored.
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Chapter 2- Background for Robotics Simulator Validation

Dynamic robotic simulators are one of the most widely used software tools in

the field of Robotics today. Some of the recent focus on these simulations has been

making them faster (e.g., as with Gazebo in the DARPA Robotics Challenge), but

one ongoing goal for rigid body simulations in general has been greater physical

accuracy. The desire is that the simulations should evince physical behavior as close

as possible to the real world, whether that closeness is measured quantitatively (as

shown in recent experiments by Vose et al. [68]) or qualitatively (as can be seen in the

unusual behavior observed in rigid “toys” like the Rattleback [44]). Clearly, Robotics

will benefit as the physical accuracy of these systems becomes more faithful to reality:

planning, optimization, and validation are just a few areas that can reap substantial

improvements with better physical fidelity.

This chapter provides a background for further discussion of robotic simulation

validation. The chapter begins with a discussion of various design considerations,

algorithms, and elements involved in the development of multi-rigid body simulations

with contact and friction and ends with a discussion of other research efforts focused

on multi-rigid body simulation validation.

2.1 Multi-Rigid Body Simulation Design

Every simulation library is the product of many design decisions. This section dis-

cusses the most salient such decisions, as judged by Gazebo’s currently supported

multi-rigid body simulators and other available open source simulation software.

2.1.1 Simulation Paradigm

Brogliato et al. [8] broadly categorize rigid body dynamics simulation software into

three paradigms: event driven, time stepping, and penalty-based. Penalty methods

treat contact using virtual springs and dampers. The resulting system of equations
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of motion can be integrated forward directly using arbitrary integration schemes,

though implicit integrators are often recommended to avoid issues with the “stiff”

equations that can result. Event driven methods (i.e., piecewise differential algebraic

equation-based approaches) integrate the equations forward in time until an impact

(“the event”) occurs; the impact is modeled and the simulator resumes integrating the

equations forward until further events are detected. Time-stepping methods, which

are based around differential variational inequality (DVI) mathematical models, can

avoid the need to locate events precisely by collecting all of the events that may occur

during a time interval into a single complementarity problem. By solving a single such

problem, time-stepping can allow systems with many contacts or impacts happening

over a small period of time (e.g., a pool break) to be simulated more quickly.

2.1.2 Coordinate Type

Articulated bodies can be defined using absolute coordinates (i.e., six coordinates

per link) or independent coordinates (i.e., six coordinates per link minus the number

of bilateral joint constraint equations). The former is used in several pieces of open

source software (including ODE and Bullet), likely because of ease of implementa-

tion. However, absolute coordinates require constraint stabilization (e.g., Baumgarte

stabilization [4]) to be used to minimize robot links from unrealistically separating at

joints.

Constraint stabilization is also used to separate interpenetrating bodies. The

bodies may interpenetrate due to non-convergent iterative solves (see Section 2.1) or

inability of the collision detection system (see Section 2.1) to find precise times of

contact. Interpenetration is also an organic byproduct of time stepping simulation

processes.
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2.1.3 Solver Type

The bilateral (joint) and unilateral (contact and joint limit) constraint equations

must be solved for constraint forces that obey compressive, non-interpenetration,

frictional, and complementarity constraints; Gazebo’s supported simulators pose

these constrained optimization problems as either nonlinear or linear complemen-

tarity problems. If the latter, either a direct (pivoting [11]) or iterative (matrix

splitting method [46]) can be used. The only available solver for NCPs at this time

is PATH [12]. For LCPs, the iterative Projected Gauss Seidel method seems to work

reasonably in practice. However, convergence to a solution is not guaranteed; both

Lacoursieré [40] and Drumwright and Shell [16] found these methods yield inaccurate

solutions; Lacoursieré showed that for matrix condition numbers greater than 107,

the method is unusable and that the method also “stagnates”.

Direct solvers are limited too. Accuracy is significantly higher than with iterative

methods (see [16]), but the linear system solves required of pivoting operations limit

the practical number of variables to on the order of 10,000, both due to compuational

complexity and available memory. The maximum number of variables is limited

even further by the rounding error that accumulates during the pivoting process; the

LEMKE [19] library limits the number of pivots to min (50n, 1000) for this reason.

Some simulation approaches enforce constraints by solving optimization problems

rather than complementarity problems: see [17, 67] for examples. While these ap-

proaches are being actively investigated, Gazebo does not currently support any

simulators using such techniques, which removes a point of comparison. Our inti-

mate knowledge of these approaches leads us to postulate that grasping performance

would be affected little using an optimization based approach, but such a comparison

will require future investigation.
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2.1.4 Collision Detection

There are few collision detection libraries that provide contact points and normal

data; most such libraries only test whether two shapes are intersecting. There are

multiple ways to compute contact points and normals (see, e.g., [31, 15]), which can

depend on the geometric representation (primitive types, constructive solid geometry,

polyhedron, implicit surface, or triangle mesh).

Finding correct contact data is complicated because two geometries are unlikely

to be “kissing” due to floating point arithmetic, and because contact points and

normals can only be estimated when bodies are interpenetrating. The estimation can

conceivably be prevented by tracking the movement of the contact surface over time,

but we are unaware of an existing open-source simulator that has implemented this

idea.

2.1.5 Quasi-Rigid DVI-Based Contact

Lacoursieré’s dissertation [41] described a relationship between the complementar-

ity problem regularization and constraint stabilization parameters and a first-order

spring and damper model. This relationship indicates that contact constraints be-

tween rigid bodies can be effectively modeled as quasi-rigid in place of the fully

rigid contact previously considered by DVI-based methods. We use the term quasi-

rigidity to indicate that contacts between bodies are treated, at least partially, using

spring-and-damper terms. We label those models with deformation along the tan-

gent plane of the contacting surface between two bodies as fully compliant; this term

would encompass both traditional finite element models and the penalty type model

of Song [61].

2.1.6 Modeling Specification

Everything that is to be modeled by a simulator must be provided through a

modeling specification which is generally defined in one or more configuration files.
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The semantics and structure of the specification language varies from simulator to

simulator and may be defined in a closed, proprietary format such that the same

specification can not be used by another simulator. There have been a number of

efforts to produce XML based specification languages [29] [24] [23] in an attempt

to unify simulation specification so that one configuration can be used across many

simulators.

The COLLADA format was initially developed by Sony but is currently main-

tained by the Khronos Group. The COLLADA format was initially developed for

entertainment applications; however, due to the common requirements for multi-rigid

body simulators and its continual development, the COLLADA format is used in

robotics applications as well.

The Open Source Robotics Foundation (OSRF) developed the Unified Robot De-

scription Format (URDF) for the Robot Operating System (ROS); however, OSRF

also developed the Simulation Description Format (SDF) for the Gazebo simulator.

URDF is primarily designed to support the distributed nature of robotic systems

while SDF is primarily designed to support the need for virtual parameters.

Each of these formats is viable for robotic simulation; however, the development

and maintenance of two different specification languages by one organization illus-

trates that adoption of a single modeling specification remains a challenge.

2.1.7 Real World Constraints

Multi-rigid body dynamics simulation has varied applications which have different

requirements. Game simulations are generally virtual and are not required to model

the real world aside from generating a plausible aesthetic. Robotic simulations model

real world systems and must account for the real world constraints inherent to physical

phenomena such as physical and temporal limitations. For example, an opaque barrier

between a laser sensor and an object physically prevents the sensor from detecting

that object. A predictive simulation of the sensor must prevent detection of the
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object; otherwise, the simulation violates real world constraints.

Plausible multi-rigid body dynamics simulation does not require modeling of real

world constraints because modeling of real world constraints increases complexity

and impinges on real-time performance. According to the principle of economical

models [52], i.e. good models include everything necessary to achieve goals but no

more, plausible simulations should omit real world constraints. However, if a plausible

simulation is used for robotics simulation, the absence of real world constraints may

significantly impact simulated behavior in esoteric ways.

If real world constraints are not modeled by a simulation, the simulation may

not satisfy requirements of the robotics application domain. For simulations in the

entertainment domain, many real world constraints can be relaxed as long as the

simulation remains real-time and realistically plausible. On the other hand, robotics

simulations require sufficient predictive capability to model real world scenarios, so

roboticists need to be aware of real world constraints and whether or not real world

constraints are modeled in a preferred simulator. For this reason, roboticists must

use great care when using game engines as a basis for robotics simulations.

Three real world constraints that should be considered in robotics simulation are

limited observability, sensor uncertainty, and temporal consistency.

Limited Observability Limited observability describes the real world constraint

where sensors used by robotic systems are only able to detect objects in the immediate

surroundings subject to physical limitations of the sensor. Objects that are occluded

to the sensor or objects that are too far away from the sensor may not be observable

depending on the underlying physics governing the sensor (illustrated by the example

above). Depending on simulator design, the entire state of the world may be accessible

to a simulated robot which may allow that robot to observe objects that would be

unobservable in a similar real world scenario.
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Sensor Uncertainty Sensor uncertainty describes the real world constraint that

sensor signals are imperfect measurements and contain noise in the signals generated

by the sensors. For example, image based sensors capture discrete pixel data which

represents combined information subject to resolution while range based sensors may

not return accurate distance measurements. State within a simulation is perfect with

respect to the simulated world, but real world sensors are affected to varying degrees

by noise. Simulated sensing may contain no uncertainty while real sensors contain

significant uncertainty for similar observations.

Temporal Consistency Temporal consistency describes the case that simulated

robots must honor the same timing constraints that real world robots are subject to.

Robots are not homogeneous systems; instead, robots are the composition of a number

of independent processing units, sensors, and actuators which operate at different

frequencies and are networked with different degrees of latency. Independent process

freqeuencies and intercommunication delays between simulated robotic components

are often overlooked and insufficiently modeled. Many robotic processes, such as

planners and controllers, require input from other processes and the timing at which

input is received dictates the outputs generated. The processes themselves also take

time which may only be loosely constrained by the simulation. Real world robots

are inherently constrained to a real time environment, and if a simulation does not

simulate the timing of robotic components, the simulation will not reflect the behavior

of a comparable situated robot.

2.2 Validation Studies of Multi-Rigid Body Simulations

Simulation validation relies on the comparison of data from at least two independent

experiments where the data that forms the basis of comparison may originate from

analytic solutions, purely simulated experiments, or real world experiments.
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The experimental setup is often described as the scenario which consists of a

description of the experimental system and all the parameters necessary to model the

system in simulation. The number of parameters may be large and quantifying these

parameters may require additional experimentation. State data of a robotic system

typically has high dimensionality with mixed units and the behavior of the system may

be nonholonomic which makes direct comparison of state data infeasible. Researchers

use one or more metrics to reduce state data dimensionality and objectively quantify

behavior; however, a metric may not capture relevant information. The scenario,

state data, and metric together form the basis of comparison for simulation.

Multi-body dynamics scenarios may range from classical dynamics inspired ideal

cases such as a simple pendulum or block on plane to complex, real world inspired

examples such as a walking humanoid. Scenarios derived from classical dynamics are

usually evaluated against data derived from an analytic solution, but these scenarios

are often too simplistic to yield significant insight into the performance of a multi-

rigid body system subject to contact and friction, e.g. a robot. Scenarios inspired

by complex, real world systems are generally infeasible to solve using an analytic

approach; however, the goal of robotic simulation is to predict the behavior of these

systems. For example, predicting the trajectory of a nonholonomic system like a car

involves computing the evolution of the system subject to precise command input

timing. A critical step toward demonstrating the consistency of robotic simulation is

validation against real world data.

This section surveys research into multi-rigid body simulation validation and are

grouped into two categories: large scale comparisons and data collection from real

world scenarios. Large scale comparisons generally deal with creating a large frame-

work in order to compare many simulators using the same model specification. Real

world scenarios primarily focus on gathering and comparing data from real world

experiments to the performance of one or more simulators.
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2.2.1 Studies of Simulation Performance

Motivated by the need to increase immersion through realism in an interactive

therapeutic application, Seugling et al. [57] focused on examining friction, conserva-

tion of energy in rotation and collisions, stability in constraints and collisions, and

overall correctness using a mixture of quantitative and qualitative metrics. Their

scenarios are generally simple cases for which we have analytical solutions: a box on

an inclined plane, a box in zero gravity, a ball and plane in zero gravity, a simple

pendulum, a compound pendulum, a stack of boxes with small initial seperation, and

a set of scenes consisting of various geometries. They measured the ratio between

tangential and normal force with respect to inclination angle in the box on inclined

plane scenario to evaluate both Coulomb friction and whether a simulator uses an

isotropic or anisotropic friction model. They measured the error between initial and

final momentum of the box in zero gravity given an initial angular velocity to the box

in all axes to evaluate the conservation of angular momentum. They measured the

kinetic energy of the ball in the ball and plane scenario to evaluate whether energy

is conserved in interpenetration and collision. They measured the distance between

bob and anchor over time using the simple pendulum to study constraint stability by

varying the mass of the bob and they measured the pendulum trajectory, period error,

and conservation of energy with respect to an ideal pendulum to evaluate correctness.

They measured the distance between links over time and the average execution time

in the compound pendulum to evaluate elasticity of constraints and computational

overhead. They measured the average time per colliding pair in the stack of boxes

to evaluate the scalability of contacts and they used a qualitative metric to evaluate

the stability of piling. Finally, they used a qualitative metric to compare contact

behavior between combinations of standard primitives, nonconvex triangle meshes,

and convex triangle meshes.

Boeing et al. [7] were motivated to identify which dynamics engines available are
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best for gaming applications. To carry out their study, they developed a middleware

abstraction layer, i.e. Physics Abstraction Layer (PAL), which is intended to pro-

vide a unified interface for dynamics simulators. Their work focused on integrator

performance, material properties such as friction and restitution, constraint stability,

and collision performance using a combination of quantitative and qualitative metrics.

Their scenarios consisted of a sphere falling under gravity, a sphere falling onto a box,

a box on an inclined plane, a chain of spheres linked to one another and constrained

to two fixed pylons, a number of spheres falling into an inverted pyramid, and stacks

of spheres or cubes. They measured the positional error of the sphere falling under

gravity to evaluate integrator performance against the ideal case. They measured

the bounce height of the sphere falling onto a box to evaluate energy dissipation

from collision with respect to the ideal case. They measured the angle at which the

box on an inclined plane begins to slide to evaluate Coulomb friction implementa-

tions against the ideal case. They measured the displacement of spheres in the chain

of spheres to compare constraint stability between simulators. They measured the

number of spheres interpenetrating into the inverted pyramid to compare simulator

collision performance. Finally, they used a qualitative metric to evaluate the stacking

of spheres or cubes as a further test of collision performance.

Gonzalez et al. [27] [28] were motivated to develop multi-rigid body validation

scenarios by needs in mechanical engineering applications; however, they also recog-

nized the need for a historical database of simulator performance as advocated by

Oberkampf [49]. Their approach allows for scenarios that are more complex than

ideal cases by allowing for comparison against reference solutions rather than against

analytical formulas. They computed reference solutions in commercial software and

validated the reference solutions against their own Fortran based simulations. Their

system attempts to balance accuracy with real-time requirements by bounding the

computational efficiency of simulation. They also permit the tuning of parameters
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to achieve a required precision with respect to the reference solutions and use the

minimum processing time as the metric of comparison. Their database maintains a

problem set, i.e. scenario definitions, a set of reference solutions, and a description

of the parameters used to produce the scored values. The problem sets that they

developed consist of two classes of problems: “basic problems” and “industrial-like

applications.” Their basic problems consist of a simple pendulum, a one degree-of-

freedom four-bar linkage, a planar mechanism consisting of seven bodies known as

“Andrew’s mechanism”, an overconstrained system of six links with one degree-of-

freedom known as “Bricard’s mechanism”, and a flyball governer. Their industrial-like

applications are complex machines for which an analytical solution is infeasible.

Hummel et al. [35] were motivated to study validation of multi-rigid body simu-

lation to determine the best candidate for virtual reality based haptic simulations in

zero gravity training. Like Boeing et al, they developed their own abstraction layer.

They measured computation time using a scenario involving the collision of large

number of spheres. They evaluated collision restitution by measuring the bounce

height of an object with respect to an ideal analytical solution. They evaluated con-

straint stability using the same scenario and metric defined by Boeing et al ; however,

they extended this work by varying the number of spheres and measured the num-

ber of spheres at which constraints began to become unstable. They evaluated one

degree-of-freedom constraint stability by simulating the throw of a toggle switch and

measuring switch vibration and the amount of constraint limit violation. They eval-

uated interpenetration during collision by perturbing a box constrained on all sides

and measuring the translational and rotational displacement of the box. Finally,

they evaluated the behaviors of a realistic screw which they modeled using solids by

measuring the position of the screw head when screwed into the nut.

Erez et al [18] used their own simulation framework, MuJoCo, to compare a num-

ber of dynamics engines for robotics applications. Their goal was to test dynamics
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engines on identical models to characterize speed, accuracy, and stability. Their ap-

proach involved complex robotics scenarios, similar to the industrial-like applications

of [27], and excluded simple systems where analytic solutions are available. Their

accuracy metric is that of “self-consistency” where they measure how much a sim-

ulated trajectory deviates from a reference trajectory after a number of timesteps

and they argue that this accuracy metric is also a stability metric. They generate

a reference trajectory from each simulator using very small timesteps, execute the

same trajectory using larger timesteps, and measure deviation from the reference tra-

jectory. They limit their scenarios to use only revolute joints, sphere and capsule

collision geometries, Coulomb friction contact dynamics, and only forces from grav-

ity, joint constraints, joint torques, and joint stiffness and damping. Their scenarios

involved: a 35 degree-of-freedom robotic arm, a 25 degree-of-freedom humanoid, a

5 degree-of-freedom planar kinematic chain, and 27 capsules falling onto a ground

plane.

2.2.2 Real Data Studies for Simulation Validation

While comparisons of simulations with analytic solutions and simulated experi-

ments are valuable, a simulator’s predictive capacity is most clearly demonstrated by

a simulator’s ability to recreate real behavior, so there are an increasing number of

research projects dedicated to capturing data from real world scenarios.

Zhang et al [72] gathered data from planar grasping experiments and used the

data to calibrate a simulator capable of recreating the behavior exhibited by the real

system. Their apparatus recorded the state of an actuator pushing an object into

a single degree of freedom gripper. They used data gathered from the apparatus to

determine uncertain parameters such as friction for a calibrated simulation of the

gripper and validated the calibrated simulation against additional data generated

by the apparatus. Lu et al [43] developed a benchmarking framework in an effort

standardize simulator validation. They demonstrate their framework by using data
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generated from the Zhang et al apparatus and by producing a validation comparison

of complementarity problem solvers.

Yu et al [71] investigated variable contact geometry and friction in a 2D plane

using a robot arm and an automated data gathering process. Their process allowed

for unattended reset of the experiment and enabled them to gather a large dataset of

real data. The same lab investigated contact modeling accuracy by recording the pose

of an object being pushed by a robot [39]. They recorded the telemetry of an object

maintained in the grasp of a robot arm as the object was pushed across a surface.

They compared forces and state from simulation with the recorded data. This same

lab also investigated improving the accuracy of impact models by analyzing data

gathered from the tossing of a two dimensional object onto a hard surface [20].

Frigerio et al [25] studied an extremely sophisticated robotic platforms for vali-

dating simulation. They compared actuator torque profiles between virtual and in

situ HyQ robots. The challenge with validating simulations of such complicated ma-

chines is attribution for discrepancies, i.e., what modeling aspect should be blamed

when the simulation does not match recorded telemetry data to the desired accuracy.

Additionally, we have found that ensuring that telemetry data is collected without

error is a challenge for even much simpler robots.
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Chapter 3- Comparative Evaluaton of Algorithms Using Quasi-Rigid
Grasping

Every simulation library is the product of a series of design decisions, including

direct vs. iterative mathematical programing/optimization solver, geometric repre-

sentation, coordinate type (reduced or absolute), and simulation paradigm (penalty-

based, piecewise differential algebraic equation-based, time stepping). Exactly how

any of these decisions affects a particular scenario or task or a class of scenarios

or tasks has yet to be established, making objective comparison and evaluation of

simulators extremely difficult. This chapter focuses on comparing the performance

of a number of simulators using a scenario and task that is ubiquitous in robotics:

grasping of quasi-rigid objects with rigid robots.

Stable quasi-rigid grasping is an anecdotally challenging task to simulate, and

potential causes of failure are numerous: constraints are subject to numerical drift;

truncation error arising from terminating an iterative method early can cause slip,

and “jitter” due to correcting bilateral constraint errors and interpenetration can

transmit excessive forces through the multi-body system

The work described in this chapter was carried out using an open test platform,

Gazebo version 4.0, to directly compare the performance of four existing multi-rigid

body simulators on the aforementioned grasping task. Gazebo is developed by the

Open Source Robotics Foundation (OSRF) which received funding for Gazebo from

the Defense Advanced Research Projects Agency (DARPA) to serve as the simulation

platform for the DARPA Robotics Challenge. As a result, Gazebo currently has

broad adoption and supports a number of dynamics libraries which make it well-suited

as a fair platform for simulator comparison, i.e. an experimenter can ensure that the

same model is used across all simulators. As of this publication, Gazebo supports

the Open Dynamics Engine (ODE), Bullet physics, the Dynamic Animation and
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Robotics Toolkit (DART), and Simbody.

This chapter considers two grasping scenarios: () a simulated robot arm moving

through a trajectory while maintaining a grasp using a parallel gripper; and () a

simulated fixed parallel gripper attempting to maintain a grasp on multiple objects

simultaneously. The arm model used in the former scenario is a hybrid of the Uni-

versal Robotics UR10 arm, sourced from an existing ROS package and mated to a

model of the Schunk MPG-80 parallel gripper. This configuration represents a rea-

sonably accurate model of an industrial arm with respect to kinematics, geometry,

and dynamics. On the other hand, the model used in Scenario () is contrived: a pair

of boxes represent the parallel jaw gripper. The “robots” used in both scenarios are

depicted in Figure 3.

(a) (b)

Figure 3: Simulated Grasping Robots

(a) The UR10 arm with Schunk hand used in the grasp with industrial arm experiment
and (b) the block gripper with eleven objects to be grasped used in the multi-block
experiment. In both images, grasped objects are shaded in green and in (b) the grippers
are shaded in blue.

Finally, we note that this research does not try to answer the question of which

software library may be superior. All libraries tested are actively developed and per-

formance is subject to change, often dramatically, as bugs are introduced or corrected

and new techniques are tested. It is also conceivable that Gazebo contains bugs in
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the interfaces to one or more libraries. This research instead focuses on understanding

the factors that can contribute to grasping performance in simulation and providing

a metric for evaluating grasp performance in simulation.

3.1 Failure Modes for Quasi-Rigid Grasping

Objects slipping from a simulated robot’s grasp can occur for several reasons, de-

scribed below.

Slip If the grasping force or friction coefficient is not large enough for force closure.

This case is the only one that is not an artifact of the simulation software.

Iterative Method Non-Convergence Iterative methods are often terminated

early; non-convergence can cause slip to occur at points of contact, joints to move

apart unrealistically (thereby, for example, causing one or more gripper fingers to

separate from the grasped object), or interpenetration to occur (which could cause

objects to drop or become entangled [54]).

Rounding Error Rounding error can occur even with direct solvers, leading to all

of the problems described immediately above, though with lesser severity expected in

this case.

Regularization Error Regularizing the complementarity problem (via, e.g., the

“constraint force mixing” parameter in ODE), causes constraint violation, which can

lead to all of the issues described under iterative method non-convergence.

Constraint Stabilization Projection methods (used in RPI-Sim, ODE, Bullet,

and DART) for correcting joint constraint errors and interpenetration are prone

to adding energy to the multi-body system [63] (which, among other issues, can

compromise simulation stability).
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Imprecise Contact Information As Section 2.1 intimates, correct algorithms—

and even precise problem specifications—for determining contact data have yet to be

established. The general effects of inaccurate points of contact, normals, or both is

currently unknown. The effects of approximating by point samples a polygonal or

nonlinear manifold corresponding to the locus of intersection between two contact-

ing bodies is also unknown. Contacting shapes between the bodies considered in the

present research are convex polyhedra, meaning that bodies will not interpenetrate if

the contact constraints are not violated on the convex hull of the contact manifold.

This fact permits ignoring the effects of point sample approximation in the present

work.

Tangential Drift Although interpenetration and bilateral constraint errors are ad-

dressed by constraint stabilization, we are unaware of any multi-rigid body simulation

libraries that stabilize constraint drift in the tangential direction, which would require

tracking the evolution of the contact manifold as two bodies move. Without address-

ing such drift, we expect manipulated objects to gradually slip out of grasp.

We determined the factors above from reasoning about how multi-rigid body simu-

lation software functions. However, teasing apart which of these factors is responsible

is not the focus of this research. Indeed, evaluating even a single factor independently

is impractical with most of the simulators that we evaluated. Instead, this research

applies multiple simulation libraries to test hypotheses (see Section 3.3) using the

spectrum of available multi-rigid body dynamics software libraries.

3.2 Quasi-Rigid Grasping Experimental Specifications

This section covers the evaluated simulators, the tasks, the performance metric used,

and the description of the experimental controls.
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3.2.1 Simulating Quasi-Rigid Grasping

We assessed every simulation using an integration step size of 1ms. We found anec-

dotally that smaller step sizes produced better grasping performance (as expected),

though our focus in this work is on factors that affect grasping performance indepen-

dently of integration step. We conducted this investigation because reducing the step

size leads to considerably slower simulations (e.g., simulations integrated at 10−4s

generally run an order of magnitude more slowly than those running at 10−3s).

ODE The version of Open Dynamics Engine (ODE) that we tested has been

modified by Open Source Robotics Foundation to correct interpenetration by at-

tempting to project bodies to a disjoint configuration (see [34] for details). ODE

uses a slightly modified version of the first-order time stepping method described by

Stewart and Trinkle [64] and Anitescu and Potra [2] with constraint stabilization pro-

cedure following the approach described in [32]. ODE uses absolute coordinates and

supports both primitive and triangle mesh geometric types. Gazebo 4.0’s interface

to ODE uses an iterative solver only, though “vanilla” ODE supports a direct solver.

Bullet The version of Bullet we tested (2.82) also uses a time stepping approach;

Bullet supports independent coordinates, though only absolute coordinates are sup-

ported in the version of Gazebo used in this study. Like ODE, Bullet also uses

an iterative solver and supports both primitives and meshes; our examination of the

source code, interface, and discussion groups indicate that ODE and Bullet func-

tion very similarly at the multi-rigid body dynamics level. However, Bullet also

includes code for simulating soft bodies, fluids, and particles (none of which are used

in the present study).

DART We tested DART version core-4 1.1.0, which uses an independent coordi-

nate formulation and the Stewart-Trinkle/Anitescu-Potra time stepping approach.
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DART uses a direct, mixed linear complementarity problem solver (specifically,

ODE’s Dantiz-Cottle LCP solver) and a triangle mesh geometry representation.

DART uses a polygonalized friction cone for contact, thereby following the Stewart-

Trinkle/Anitescu-Potra contact model more faithfully than the approximate pyrami-

dal friction model used by both ODE and Bullet. We had to modify the DART

source code to allow us to change the Coulomb friction coefficient for DART experi-

ments.

Simbody Simbody version 3.4 uses a considerably different paradigm than the

other physics engines in these experiments. Simbody uses a quasi-rigid contact model

(to permit modeling the human skeleton, muscles, and skin) that follows the event-

driven paradigm in place of the time stepping approaches used by ODE, Bullet,

and DART. Simbody proved to be too slow to conduct the numerous requisite

experiments (simulating a single grasping scenario required on the order of days, i.e.,

in the same timeframe as FEM-based simulations). This elimination is unfortunate

because Simbody’s focus has been on accuracy, while the other simulations described

above have targeted low running time. Simbody’s performance does make it clear

why the present work focuses on rigid body dynamics in place of more accurate FEM-

type deformable codes, for which the remainder of the libraries described in this

section can simulate the scenarios in minutes: considerably longer simulation times

preclude model predictive control, fast edit-compile-test cycles, motion planning, and

similar applications of multi-body dynamics simulation to robotics.

RPI-Sim The multi-block grasping example was sufficiently simple that we were

also able to set up the example in RPI-Sim (Subversion revision 463). RPI-Sim

supports pivoting solvers (Lemke’s Algorithm); a popular iterative matrix splitting

method (Projected Gauss Seidel); and PATH [12], a popular library for solving com-

plementarity problems (which operates using Lemke’s Algorithm for LCPs with few
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variables and via a Newton-based method more generally). RPI-Sim uses the first-

order Stewart-Trinkle/Anitescu-Potra method with the stabilization approach de-

scribed in [32].

3.2.2 Quasi-Rigid Grasping Scenarios

The experiments using both grasping tasks, each of which is described immediately

below, begin with the grasped object lodged firmly in the gripper: no grasp planning,

pre-grasping, etc. were necessary in any experiment.

Grasp with Industrial Arm We acquired a model of the UR10 robotic arm

as depicted in Figure 3(a) from the ROS Industrial repository and converted it to

Gazebo’s SDF format. We attached this model to a model that we constructed of

the Schunk MPG-80 hand, using CAD files and technical schematics from the man-

ufacturer. The mated UR10/MPG-80 model yields a 8-DoF system (6-DoF arm +

2-DoF gripper). The inertial properties for the Schunk hand were set by approximat-

ing the bounding volume of the palm assembly and the individual fingers with boxes

and apportioning the mass of the palm to be 80% of the total mass (described in the

hand schematics); each of the two fingers were assigned the remaining 20% of the to-

tal mass. The box approximations were used for collision geometries in the geometric

primitive experiments and the CAD meshes were used for collision geometries in the

tessellated mesh experiments. The gripper prismatic joints were constrained by joint

limits derived from the stroke per finger (defined in the schematics). Each gripper is

actuated toward closure with 100N of force, which should be sufficient to maintain

force closure on even relatively massive objects.

The object to be grasped was modeled as a simple cube with equal dimensions

of 100mm. This yields a primitive/primitive representation, which we hypothesized

would yield more robust grasping than using primitive/mesh or mesh/mesh-based
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experiments. A “collision box” was used for the geometric primitive experiments; for

the tessellated mesh experiments, a mesh was generated in Blender using the same

dimensions as the cube. The mass of the object to be grasped was set to 1 kg, and

its inertia tensor was derived from a box with given dimensions and mass.

The arm controller was designed to move the arm through randomized sinusoidal

trajectories for all joints using PD-control. The amplitude of each sinusoid was tuned

to be as large as possible without the arm colliding with either itself or the ground

plane. As noted above, the prismatic joints controlling the grippers applied 100N of

constant force.

Block Grasp The block grasp scenario consists of a simple manipulator with a

fixed base and a pair of parallel grippers as depicted in Figure 3(b). Each gripper is

modeled as a box with dimensions larger than the grasp object and with a mass of 1

kg. Each gripper is actuated toward closure with 100N of force per block.

The object to be grasped is the same as used in the industrial arm experiment,

i.e. 1/1000m3 with 1kg mass.

3.2.3 Measuring Quasi-Rigid Grasping

Selecting a metric for identifying effective grasping performance proved challenging

because our focus is only on the qualitative behavior of keeping the object within the

gripper. Comparing telemetry data against, e.g., control commands, would not be

indicative of simulation performance as the robot might be observed to maintain a

perfect grasp while the end-effector deviates from its commanded path. We devised

a work-type metric to capture the qualitative behavior we sought. Specifically, we

use a first-order approximation to the kinetic energy necessary to restore the grasped
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object to its initial pose relative to the grippers. This formula is described below:

T =
1

2
mvTv +

1

2
ωTJω (1)

v ≡ x
∗ − x
∆t

+ (ẋ∗ − ẋ) (2)

ω ≡ 2G(
q∗ − q

∆t
) + (θ̇∗ − θ̇) (3)

x∗ and x in Equation (2) are the desired and current position of the grasped object,

ẋ∗ and ẋ in Equation (2) are the desired and current linear velocity of the grasped

object, q∗ and q in Equation (3) are the desired and current orientation of the grasped

object (in unit quaternions), and θ̇∗ and θ̇ in Equation (3) are the desired and current

angular velocity of the grasped object. The difference between the unit quaternions

is converted to an angular differential using well known formulas; we use one such

formula to determine G, which is defined with respect to q (see, [48], p. 175).

Each desired configuration is defined with respect to the grasped object’s initial

configuration. Velocities are defined relative to the gripper’s velocities. The inertia

tensor of the block, J′ is defined relative to the grasped object body frame and is

transformed to the world frame by operation J = RJ′RT where R(q) is the grasped

object’s orientation matrix. All other variables described in the equations above are

defined relative to the global frame.

For each iteration, we compute the metric T of all grasped objects with respect

to both the left and right grippers; those values are then averaged to yield a single

value. The simulation was terminated if the simulation time reached 100 seconds or

the metric exceeded 107 units (the simulation configurations lack a ground plane, so

an object that slips from a grasp causes the metric to quickly exceed 107). Other

invalid configurations, such as possible locking of models due to interpenetration

(see [54] also) were noted, but otherwise not objectively measured; however, our

metric does penalize interpenetration in a stable grasp compared to stable grasps
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with no interpenetration. Finally, note that T = 0 when the relative configuration

between the object and the grippers matches the initial relative configuration.

3.2.4 Quasi-Rigid Grasping Experimental Controls

The experimental controls consisted of each of the three simulators (four in the

case of the multi-block experiment) listed previously using Gazebo’s default param-

eters. We do tune one simulator—ODE, which was Gazebo 4.0’s best supported

simulator—to show that it is possible to improve on these parameters significantly

for this task; however, we also wished to establish a performance baseline. Gazebo’s

default parameters have been determined using domain knowledge to maximize per-

formance (speed and accuracy) over numerous simulation models and environments.

The models used in the experimental controls used realistic inertial values for all

rigid bodies. Primitive geometric boxes were used to model the grippers and grasped

objects. Coulomb friction coefficients were set to 100.0, which is significantly higher

than that considered to be natural but ensures that the models contact without slip

(in theory, if not implementation). Examination of multiple published friction tables

indicates that 1.0 acts as an effective upper limit, though values larger than 1.0 are

compatible with Coulomb’s friction model.

3.3 Testing Hypotheses with Quasi-Rigid Grasping Scenarios

This section describes the hypotheses that we formulated and examined using

the industrial arm and multiple block grasping scenarios.

3.3.1 Hypothesis 1: Modifying Inertia Properties Could Lead to

Improvements in Grasping Performance

It is accepted in the multi-body dynamics simulation community that large discrep-

ancies in mass ratios lead to lower simulation performance. Such discrepancies cause
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ill-conditioning of the manipulator inertia matrix1, given Featherstone’s analysis [21]

that showed that the condition number of this matrix grows up to O(n4) in the num-

ber of links in a robot and is also dependent on variations in link inertia (among other

factors). This ill-conditioned inertia matrix may be viewed as a source of stiffness

in the underlying differential equations [53], thereby affecting simulation stability.

However, we guessed that grasping performance might be affected as well.

We tested this hypothesis by comparing performance for the experimental control

against a robot model with modified robot arm and gripper link inertias (for the

UR10). We assigned the shoulder link a mass of 1kg and inertia matrix of identity.

Each subsequent link in the chain would have its inertial properties scaled geometri-

cally (i.e., the second link would be scaled by 1/x, the third link would be scaled by

1/x2, etc.) We experimented with scaling factors between 1.0 and 10.0.

3.3.2 Hypothesis 2: Increasing the Friction Coefficient to Very

Large Values Will Not Reduce Grasping Performance

While setting the Coulomb friction coefficient to a large value (i.e., larger than

1.0) will not generally yield a realistic simulation, there exists numerous anecdotal

accounts of simulation users setting friction coefficients to particularly large values

to prevent slipping at contacts. We tested the hypothesis above to see whether par-

ticularly large values of µ would reduce the numerical stability of the pivoting LCP

solvers; we would expect the condition number of the LCP matrix (see [2] for the

matrix’s structure) to increase proportionally with µ. For testing the hypothesis,

we modified the friction coefficients between contacting models in our experimental

group by using a friction value of µ = 108.

1Although such a matrix is not explicitly constructed within all simulators, the conditioning of
that matrix should yield a measure of numerical stability.
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3.3.3 Hypothesis 3: Using Primitive Geometries in Place of Mesh

Geometries Yields Improved Grasping Performance

Historically, modeling contacts between bodies represented using ubiquitous mesh-

based geometries (e.g., triangle mesh) has proven challenging. We wanted to test

whether this effect was present in the evaluated simulation software. In cases where

multi-rigid body dynamics libraries supported both mesh and polyhedral representa-

tions (i.e., ODE and Bullet), we varied the representation of the grippers, of the

object, and both. The evaluated groups were then ()polyhedral grippers, polyhedral

object; ()polyhedral grippers, mesh object; ()mesh grippers, polyhedral object; and

() mesh grippers, mesh object.

3.3.4 Hypothesis 4: Pivoting LCP Solvers Are More Effective at

Simulating Grasping than Iterative Matrix Splitting Solvers

This hypothesis follows from past research that has found that pivoting solvers

are considerably more effective at solving LCPs (corresponding to multi-rigid body

contact problems) with tens of variables to high degrees of accuracy [16]. We specu-

lated that a scenario with low admissibility for error would be more likely to expose

this difference. Figure 3(b) illustrates this scenario, for which even one block slipping

would likely lead to catastrophic failure. The experimental variable for testing this

hypothesis was the number of blocks in the grasp, which varied from one to eleven.

3.4 Comparative Analysis of Quasi-Rigid Simulation

The experiments generated significant data, including numerous plots and videos,

which are available at our repository (https://github.com/PositronicsLab/

grasp-data). Plots of control performance for the industrial arm and multi-block

performance are depicted in Figures 4 and 5.

The data indicates the following responses to the hypothesis presented in the

previous section.
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Figure 4: Industrial Arm Grasp Control Analysis

Metric performance for the industrial arm grasping experimental control over three
simulators (ODE, Bullet, and DART). Bullet becomes unstable immediately. ODE is
able to maintain a stable grasp for nearly a second of virtual time. DART is able to
maintain a stable grasp for nearly 35 seconds.
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Figure 5: Multiple Block Grasp Control Analysis

Metric performance for the multi-block grasping experimental control (using a single
block) over three simulators (ODE, Bullet, DART). Bullet becomes unstable
immediately. DART (and to a lesser extent, ODE) exhibits a concerning discontinuity in
performance, but generally is able to maintain a grasp for the length of the experiment.
ODE maintains a stable grasp.
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Does altering inertial values affect grasping performance (Hypothesis 1)?

Yes. Unit mass / inertia yields significantly better grasping performance compared to

the control group with realistic inertias (as depicted in Figure 6). Any integer scaling

factor reduces the performance significantly worse than the control. These results

indicate that simulation users must take care in setting inertial values, even for this

task for which simulation stability does not seem to be a factor.

Figure 6: Industrial Arm Inertial Modification Analysis

Metric performance for the industrial arm grasping experiment over three simulators
(ODE, Bullet, and DART) using modifications to inertial values. Grasping performance
is improved significantly in two simulators compared to the depiction in Figure 4.

Do very high friction coefficients yield less stable simulations (Hypothe-

sis 2)? No. Our experiments (and Figure 7) indicate that a high friction coefficient

(µ = 108) does not affect the stability of the simulations.
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Figure 7: Multiple Block Friction Analysis

Metric performance for the multi-block grasping experiment (using a single block) and
very high friction value over three simulators (ODE, Bullet, and DART). Performance
appears identical to Figure 5.
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Does using mesh geometries impact grasping performance (Hypothesis 3)?

Yes. Both tested versions of DART and Bullet “segfaulted” with tessellated ge-

ometry. ODE drops the grasped object nearly immediately. We recommend using

primitive type geometric representations in these simulation libraries whenever possi-

ble; aside from maximizing the performance metric in our experiments, the software

implementations for primitive geometries have anecdotally proven to be far more

robust.

Does the iterative solver fail readily on the grasping tasks (Hypothesis 4)?

No. Surprisingly, the lack of convergence proofs for the iterative LCP solver [40]

and the much poorer solution performance [16] does not translate to challenges with

grasping. Instead, we have found that the iterative solver performs better than the

pivoting solver on the sensitive grasping scenario that we devised (see Figure 8).

Does a particular simulation library outperform others across the board?

While we prefer not to address this question for reasons described in the introduc-

tion to this chapter, we understand that readers will ask it. With the caveats in

that section in mind, DART generally outperformed ODE under our metric; this

performance differential could be due to many factors (pivoting method vs. itera-

tive, accuracy of friction cone approximation, generalized coordinates vs. absolute

coordinates). One key observation: ODE was able to simulate all scenarios, even if

it does not always yield the highest performance; the library crashed less frequently

than others, as the software has remained quite stable. Bullet performed surpris-

ingly poorly, which Erwin Coumins (the lead developer) attributed to the particular

version we examined (Bullet undergoes a fairly aggressive release schedule) as well

as possible bugs in the Gazebo-Bullet interface, in personal communication.
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Figure 8: Multiple Block Solver Analysis

Logarithmic inverse metric performance for the multi-block grasping experiment,
illustrating direct vs. iterative solver performance at the end of 0.3s of virtual time. Taller
bars indicate better performance. A missing bar (see, e.g. rpi (direct) for 11 blocks)
indicates failure.
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3.5 Conclusions and Future Work with Grasping Scenarios

Our experimental results make clear that analyzing quasi-rigid grasp failures in multi-

rigid body simulation software is not a trivial problem. Software quality and design

decisions can both affect grasping performance; the latter’s effect is not necessarily

predictable, as, for example, the results from testing our fourth hypothesis indicate.

Our results point to new research efforts as well. Why do splitting matrix iterative

LCP solution methods work better on the multi-block grasping scenario? What is

the mechanism by which “regularizing” the inertia matrix values leads to more stable

grasping performance? Can there be an effective middle group between primitive

geometric representations (which are fast to evaluate and less challenging to code) of

objects and mesh based representations (which are slow and challenging to code but

for which formats are ubiquitous and shapes are generalizable)?
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Chapter 4- Validating Controllers Through Temporally Consistent
Simulation

As dynamic simulation becomes increasingly prevalent in roboticists’ software de-

velopment cycle, new needs are beginning to emerge. This chapter addresses one such

nascent need: validation that controllers for robots modeled with physically accurate

dynamic simulation will function as desired when transferred to physically situated

robots.

There exist numerous technical reasons at the systems level that make the above

goal surprisingly difficult, including architectural challenges (adapting existing sim-

ulation software toward meeting the goal), scheduling challenges (slowing the rate

of execution of the controllers to match the time evolution of simulations), and tim-

ing challenges (timing processes with sufficient precision to measure high frequency

control loops).

The technical challenges become particularly tortuous when accounting for sim-

ulations and controllers that may run on symmetric multi-processing, distributed

processing systems, or GPUs and when supporting simulations that use higher-order,

adaptive, or implicit integrators. This chapter does not address these considerations

and instead focuses on the time consistency between control software and the simu-

lation under simpler conditions.

We also avoid consideration of simulations that run significantly faster than real-

time (we currently wish to steer clear of investigations into how to “drop” cycles from

controllers yet still achieve some minimum level of simulated robot performance).

This omission is reasonable due to the common desire for high accuracy in robotic

simulations, which often require on the order of a second of computation to simulate

a second of time. Robotics simulations to-date typically focus on physical accuracy

(i.e., attempting to produce output that matches real world phenomena). Our work
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focuses on temporal consistency by slowing the execution of user-level software such

that it proceeds proportionately to the advancement of virtual (simulated) time just

as it would on an actual robot.
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Figure 9: Processing Time for a Large Number of Collisions

Plot of experimental data modeling 1,000 boxes moving on an enclosed planar surface
using ODE [59]. The plot shows that the time required to compute a simulation iteration
is highly variable: the maximum time is over 50% higher than the minimum time in this
experiment. Thus, the execution time granted to the robot controller changes over time
proportionately to the rate of simulated time.

For a simple example, if the simulation advances one second of virtual time [37] for

every ten seconds that pass in the virtual world, we would want to run the controller at

1/10 its nominal speed: if the nominal speed were 100Hz, we would want the controller

to run at 10Hz. As experimental data in Figure 9 shows, the disparity between virtual

and real time does not remain constant, so our strategy must correspondingly adapt

to such fluctuations dynamically. The practical effect of ignoring this disparity in time

is that controllers which run (even slightly) more slowly than their nominal frequency

may cause robots or other controlled systems to operate one way in simulation and

another way on physically situated systems, even if the fidelity of the simulation to

reality is nearly perfect.
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The temporal consistency of simulating dynamics is safely ignorable when sim-

ulating dynamics for computer gaming and computer animation applications (the

original focus of some popular simulation libraries like Gazebo and ODE). How-

ever, the temporal consistency between the simulation library and the “user level”

software (controllers, planners, perception loops) is a relevant concern when simu-

lating dynamics for robotics applications. This issue arises because the simulation

software does not simulate at the rate of “wall clock” time; as a result, the user level

software—which may be expected to feed commands to and pull state from the sim-

ulation at roughly the same rate it would perform those operations on a physically

situated robot—can not be expected to exhibit similar performance in simulation as

in situ.

This chapter investigates the issues of temporally consistent simulation and de-

scribes a framework that ensures robotic simulations produce temporally consistent

results. This objective is achieved through the scheduling and timing of the dynamics

process and the other user level processes that are necessary for robotics simulation.

4.1 A Contrast Between Robot and Simulation Architectures

We depict the architecture of a physically situated robotic system in Figure 10 as

a reference point. Real-time components such as controllers generally operate at

regular, independent frequencies while non-real-time components deliver inputs to

other modules at variable frequencies.

A controller that has not received updated input from a non-real-time module

will continue to control motor servos using feedback and stale input until new input

is received. As a result, a controller can drive the system away from the desired

trajectory if planning outputs are not received with precise timing.

In controlled environments, planning can be carried out in advance so that plan-

ning outputs can be delivered to controllers with precise timing. In uncertain environ-
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Figure 10: Architecture of a Physically Situated Robotic System

Named variables include qd, q̇d, q̈d (desired robot position, velocity, acceleration), y(t)
(“raw” sensory data, e.g., point clouds), and u(t) (motor torques). Modules in double
stroke (controller, servos, etc.) generally run at a regular, independent frequency while
non-real-time processes (perception loops, planners, etc.) deliver outputs at a variable
frequency.
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ments where advance planning is impossible, the state of the environment may change

significantly during planning such that the system can not act without entering into

an uncertain and potentially hazardous situation.

Figure 11: Architecture of a Typical Simulated Robot

This illustrates the implicit architecture of a simulated robot system if the simulator and
the control loop run in lockstep. This architecture eliminates the possibility of race
conditions (the control loop only operates while the simulation is “frozen” in time, and
vice versa), but is not representative of actual robot control architectures (embedded in
Figure 10).

Current simulation architectures leverage a simple model whereby the dynamics

executes for steps of time, and after each step the simulator invokes a call-back func-

tion which defines the planning and control for the system. This function can access

dynamics state and it can actuate the system by adding virtual forces and torques.

Importantly, the callback function can execute for an unbounded amount of time,

without the time in the simulator progressing at all. The implication of this is that
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a significantly intelligent planner with correspondingly large computation times will

execute on the exact, unchanging environment it used as input, thus ignoring plan-

ner computation time. If this system were transplanted into a real environment the

physical state of the system would diverge from the plan, possibly irreparably, by the

time such a planner returned a sequence of controls for the system.

We term the model typically employed by robotic simulators (e.g., Gazebo [38],

SL [55], Moby [14]) the callback model. This model, which is illustrated in Figure 11,

is simple: the simulation requests motor commands from a controller (via a callback

function) for some time t and state x(t).

In general, as is the case when higher order, adaptive (variable step), or implicit

integrators are used (which facilitate more accurate, faster, and more stable inte-

gration, respectively) the controller may be called with non-monotonically increasing

times t. The controller’s loop can also run at any rate it desires, because the sim-

ulation blocks until the callback returns. This architecture allows the inexperienced

roboticist to inadvertently employ computationally intensive algorithms in software

components that require reactive behavior; such algorithms would only be feasible if

physically situated robots were able to freeze the world, plan, and then resume the

world’s dynamics. Both of these issues lead to substantial effort when transferring

software from simulation to real robots.

4.2 Background for Temporally Consistent Simulation

Simulators integrate user defined client components together with dynamics libraries

into a single framework such that a particular scenario may be evaluated. We define

client processes to be the set of controllers and planners evaluated in such a system.

Multiple robots might be simulated, each with sets of client processes. Collections of

robots and environmental obstacles form a scenario. Each of the robots has a set of

sensors and actuators that are controlled by the client processes in the system.
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4.2.1 Requirements for Temporally Consistent Simulation

Temporally consistent simulation attempts to ensure temporal consistency between

different software components, and a simulation environment (cf. the notion of con-

sistency for real-time aware, distributed shared memory accesses in Singla et al. [58]).

The goal of temporally consistent simulation is not adhering execution to real-time,

but rather ensuring consistency between the virtual progress of the dynamics, and

the computational progress of the robotics software.

A difficulty in providing a temporally consistent simulation infrastructure is that

the timing requirements for the client processes vary significantly, and that they

require accurate timing from the system. A system’s sensors and actuators often

have a natural frequency at which they provide environmental data or take actuation

commands. Correspondingly, controllers are often executed at a rate closely tied to

those sensor and actuator frequencies (i.e. their rates of input/output), and thus

execute in a periodic manner. Specifically, they are activated by the OS every N

milliseconds, at which points they do their computation, and block waiting for the

next periodic activation. Note that if a controller overruns its computation, it might

finish execution only after an activation. This is often called missing a deadline, and

can result in instability. In contrast, planners often execute irregularly, do as much

computation as is required, and provide their output as fast as they can, but not

on a tight schedule as with controllers. These computations are often called best-

effort. Planners often also provide higher-level sets of commands to the controllers

via Inter-Process Communication (IPC) channels.

In a temporally consistent simulation, the activations of periodic controllers must

be as time-accurate as possible, and the computation for the planners must not in-

terfere adversely with the controller’s ability to meet deadlines. The most difficult

timing requirements, however, derive from the interactions between client processes

and the external world, and between client processes. If the simulated time within
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the dynamics gets too far ahead of the amount of time that the client processes have

executed, then sensor data will reference data “in the future”. Alternatively, if the

simulated time in the dynamics lags behind computation, then actuator commands

will be sent to stale dynamics state. Comparably, the planner and controllers must

be temporally kept in sync for the same reason. This is at the core of temporal con-

sistency: all aspects of the simulation environment must proceed at rates that are

realistic, and in sync.

4.2.2 System Scheduling Toward Temporally Consistent Simula-

tion

In attempting to address temporally consistent simulation, this research requires

an infrastructure that can control not only the rate of progress of a dynamics engine

(which is often provided naturally by it’s API), but also of the execution progress of

multiple client process computations. Put another way, the temporally consistent sys-

tem infrastructure requires control over the scheduling of the system. Unfortunately,

there is a semantic gap between what scheduling facilities the kernel of the system

provides (often a black-box), and what is required by the simulation architecture.

Many previous research projects in the area of operating systems have attempted to

solve this problem. For example, [50] and [22] provide system infrastructures that

are extensible, enabling normal user-level processes to define their own scheduling

policies. However, they both require drastic system changes to provide these infras-

tructures. Alternatively, [3] and [1] attempt to create an environment in existing

systems in which some of the timing characteristics can be controlled by user-level

code. Our research continues with this trend by creating a multi-process simulation

environment in which the coordinator plays the role that the kernel traditionally takes:

it controls system scheduling (i.e. the interleaving of different client processes, and

the dynamics), and communication. However, it is designed to execute at user-level
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using only the facilities and APIs provided by a POSIX-compliant OS such as Linux.

Thus, users need not modify their underlying systems at all.

Real-time operating systems (RTOS) could be used to provide the same function-

ality as our temporally consistent simulation design on Linux, but would surprisingly

not provide many additional assurances. The focus of RTOSes is often to control and

bound latency for I/O. As temporally consistent simulation replaces traditional I/O

with interfaces for coordinator and dynamics interactions, such RTOS facilities are

superfluous.

The coordinator must address three main challenges: ()how can Linux’s POSIX-

like API be leveraged to control scheduling and communication; () how can abstrac-

tions be provided to client processes so that they read sensor data, send actuator

commands, and communicate via IPC normally; and () how can client computation

be scheduled alongside the dynamics engine’s virtual time?

4.3 OS Facilities for Temporally Consistent Simulation

This section describes our use of the Linux API to time processes, control scheduling,

and provide intercommunication between processes in order to support temporally

consistent simulation.

4.3.1 Temporal Accounting of Processes

The goal of the temporally consistent system is to ensure that for a number of client

processes, and the dynamics, time progresses consistently for all. A key concept

for temporally consistent systems is the maximum deviation in this progress, which

we define in the following. We denote each of the client processes and dynamics as

{p0, . . . , pn} ∈ P . pi ∈ P has executed (or had simulated time progress) an amount

of time eti by time t within a given simulation infrastructure. Each periodic process

blocks waiting for its next activation, thus essentially moving its own computational

progress forward by the amount of time it waits, wt
i . This wait time is common for
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controllers that activate periodically, but don’t use all execution time until their next

activation. Thus we define the temporal drift of the system, ∆, as such:

∆ = max
∀t
{max
∀pi∈P

(eti + wt
i)− min

∀pi∈P
(eti + wt

i)}

Intuitively, ∆ is the maximum deviation in temporal progress between any two parts

of a simulation. A perfectly temporally consistent system is one in that ∆ = 0, while

a traditional callback-driven simulator with a planner that always executes for more

time than a step in the dynamics has ∆ =∞ as t→∞.

Commodity hardware features timing facilities that are based on somewhat gran-

ular units of time. For example, timer ticks provide preemptive execution to prevent

system starvation from a single process, which occur at a minimum fixed interval

(for example, 100 or 1000 times a second). POSIX-based operating systems provide

APIs for accessing timers and execution accounting facilities. Thus, the granularity

for executing processes on modern systems is somewhat large. If this is bounded by

10ms (the timer inter-arrival on our system), then ∆ ≥ 10ms. Thus our temporally

consistent system attempts to minimize ∆ within the confines of the hardware and

OS provisions. However, we have found that the choice of the OS facility used for

this timing has a large impact on the accuracy of timing in the system.

Accounting for execution time. To track the execution progress of a client pro-

cess, traditional OS facilities (such as those used in the time and top programs) have

a very large granularity, and an unbounded error. Instead of relying on these very

coarse grained mechanisms, we use the cycle-accurate time stamp counter register

that is available on most processors. It is a 64 bit value that counts the number of

cycles elapsed in the processor, and is accessible on x86 and x86-64 processors through

the rdtsc instruction. To maintain accurate time using rdtsc, the system must ()

know the processor speed; ()maintain a consistent processor speed (or, alternatively
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use “invariant time stamps” in modern processors); and () all client processes and

the coordinator must remain active on only one, shared processor core. For (), we

read the processor speed from the /proc file-system, for (), we disable all power sav-

ing and throttling features, and for (), we confine the measured process to run on a

single processor core using the sched setaffinity(.) system-call family. Thus our

system can cycle-accurately account for the execution time (eti) of each client process.

Accounting for wait time. To track the wait-time (wt
i) for a process, our system

provides an API similar to setitimer which enables recurring, periodic activations.

Controllers use our API to schedule periodic activations, and after their computation

for a specific activation is complete, they become inactive waiting for the next acti-

vation. The system tracks this elapsed wait time until the process is again executed.

Notably, this wait time does signal some temporal progress for those controllers, even

though it does not include computation time, thus why we consider it in the calcula-

tion of ∆.

Granularity of preemption. For any scheduling system to control the execution

of unknown computation (that might, for example, contain an infinite loop), preemp-

tion is required. A significant flaw of the callback model is that it executes the planner

non-preemptively – the simulator cannot stop the planner when it has executed for

too long. The hardware provides timer interrupts as its basic mechanism for pre-

emption. POSIX provides a number of facilities for notification of timer interrupts.

Our coordinator uses signals associated with the timer to receive these notifications.

When the hardware causes a timer tick, the OS vectors it into a user-level signal

that switches away from the previously executing client process (e.g., planner), and

to the coordinator, where scheduling decisions can be made. This, combined with the

accurate execution time explained above, provides the temporally consistent system

with the main facilities it requires to manage timing.
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4.3.2 Scheduling Simulation Processes

The default scheduling policy in Linux is SCHED OTHER that makes no guarantees

on when any thread in the system will make progress. In contrast, it also includes

two real-time policies for first-in-first-out, non-premptive, fixed priority scheduling,

and preemptive (round-robin), fixed priority scheduling—SCHED FIFO and SCHED RR,

respectively. These policies are predictable in that if two processes both want to run

on the CPU, the higher priority one will always be chosen to execute. A process can

be set to be scheduled using any of these policies via the sched setparam system call.

Context switching. We take advantage of the predictable behavior afforded by

these kernel scheduling policies to implement our own scheduling policy in the co-

ordinator. The coordinator itself always executes at the highest priority. The client

process it wants to switch to will be given the next highest priority. To finish the

switch to that process, the coordinator will block waiting for timer interrupts, ac-

tuator commands, blocking notifications, and IPC (blocking on multiple sources in

POSIX can be done with select). If any of these are detected, it will wake, and

immediately activate (as it is highest priority). Whenever the coordinator executes,

it makes a scheduling decision about which client process/dynamics should run next

to optimize for a minimal ∆.

Process blocking. In attempting to override the scheduling policies of the kernel,

the coordinator must consider the case when a client process blocks. For simplicity,

in this work, we assume that client processes only block waiting for timeouts (peri-

odic controllers), or waiting for sensor data. Without accounting for blocking, the

coordinator might lose control of the system: if the process that is supposed to be

executing instead blocks, then the kernel will take over and choose the next highest

thread to execute, which might not be in the time consistent system, thus invalidating

the coordinator’s execution accounting.
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4.3.3 Communication Between Simulation Processes

Communication between client processes (e.g., the planner sending commands to

the controller), sensor data requests, and actuator commands require the coordinator

to mediate the communication. Each client process is given access to two pipes that

are used to () block the process waiting for an event (e.g,. IPC, sensor data), or

() send a notification to the coordinator that the process is sending data (e.g., IPC,

actuator commands). The coordinator is awakened by such notifications and can

decide where to copy the data (it is in shared memory) or how to manipulate the

dynamics.

4.4 Temporally Consistent Simulator Design

The time consistent simulator must manage multiple conflicting goals. On the one

hand, the timing requirements of controllers require the meeting of deadlines (i.e.,

an accurate activation time), and on the other, temporal consistency is required to

have a clear mapping between actual system execution, and simulated execution. As

the simulated environment must support multiple robots and varied software infras-

tructures with rich communication structures, it must be highly flexible. This section

covers the implementation of the infrastructure, and details how it integrates with

the OS facilities from Section 4.3.

4.4.1 Hierarchical Scheduling and Threads

To handle the required generality, we use a hierarchical scheduling framework [50].

Such systems define a tree of schedulers. The leaves of the tree are client processes,

and the dynamics. When activated, the root scheduler determines from its children

which to execute (i.e. it makes a scheduling decision), and does so using a polymorphic

method invocation to dispatch the child. If the child is a leaf, then the dispatch

function will either () use the context switch mechanism described in Section 4.3,
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or () make an invocation into the dynamics to step the simulated time forward.

However, as the system is hierarchical, the dispatched child could be a scheduler

itself. The key insight here is that each of the schedulers in the hierarchy can define

different scheduling policies.

Scheduling policies. There are two policies we use in the system, one to maintain

minimal temporal consistency, and another to do strict priority-based scheduling. As

a general rule, the schedulers close to the root are concerned with temporal consis-

tency, while those that represent an actual scheduler on a robot are concerned with

maintaining accurate timing for the system controllers, thus placing them at a higher

priority than the planners. Though more scheduling policies could be added, we found

that these are sufficient.

Example use of hierarchical scheduling. The system set-up we use in Sec-

tion 4.5 includes a dynamics engine and two robots, one with both a planner and a

controller, and the other with a simple controller. All of the three threads for the

robots, and the dynamics must be scheduled. Thus, we organize the system with

a single root scheduler for consistent timing between each robot, and the dynamics.

The robot with both the planner and the controller has each under a scheduler with

the fixed-priority policy, with priority going to the controller. The hierarchical ar-

rangement of schedulers and of dynamics and client processes is essential to properly

schedule given the different goals of different parts of the system, and to enable the

simulation of complex, possibly multi-robot systems.

Maintaining proper accounting in the hierarchy. Just as scheduling decisions

follow a chain from the root to a leaf, the accounting for execution time and progress

must go from leaves down toward the root, so that scheduling decisions can be made

at each scheduler based on an accurate rendition of how much temporal progress all
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of its children have made. For this, we aggregate the execution times of all children,

unless they are all blocked waiting for sensor data, in which case we determine that

child’s progress to be the minimum of those block times.

4.4.2 Coordinator Design

The coordinator is the heart of the system and orchestrates all execution. The

root scheduler is maintained by and the hierarchical scheduling policy is executed

in the coordinator, and when a dispatch is made to a client process, the coordina-

tor goes through the following steps: () swap the priorities of the previously active

client process, and the one we want to switch to (Section 4.3), () take a time-stamp

reading (Section 4.3), and () block the coordinator (on select) waiting for an event

(timer tick or request for sensor data). As the coordinator (which is highest priority)

blocks, the system naturally switches to the new process, thus completing a context

switch. Unblocking the coordinator (and subsequent blocking of the active client)

is accomplished by writing notifications to the pipes that will wake the main coor-

dinator thread of execution. A client process explicitly notifies the coordinator of a

servicing need and scheduling demands by sending timestamped read, write, and

idle notifications to the coordinator which trigger a yield by the client process and

rescheduling per its scheduling policy. The coordinator also implements a real-time

monotonic timer via timer create that periodically sends a timestamped timer no-

tification. The timer notification ensures the coordinator interrupts a long running

(typically best-effort) client process such that all client processes (especially periodic)

are given fair access to the processor on a regular basis and no client process can

starve all others.

Coordinator initialization. System boot-up is a delicate process that we detail

here. Upon initialization, the coordinator is bound to the CPU, set as a real-time

process with highest priority `0 (Table 1), opens pipes for IPC, opens the shared
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Priority Level Process Description
pc `0 coordinator highest real-time priority for the OS
pc − 1 `1 active client the currently dispatched client
pc − 2 `2 block detection reserved for a block detection process
pc − 3 `3 waiting clients all other waiting (or blocked) clients

Table 1: Process Priority Assignment.

memory, intializes the dynamics system, creates all client processes, and initializes

the timer. Creation of a client process involves wrapping the process with a client

thread, forking a new process, scheduling with the system as a real-time process and

with real-time priority `3, binding to the same CPU as the coordinator, disabling

console interaction, and launching the executable file via execl. Console interaction

is disabled after the fork by forwarding stdin, stout, and stderr to /dev/null

to minimize blocking system calls within these processes, which might disturb the

coordinator’s control over timing. When a client process is dispatched, the coordinator

raises the client system priority from `3 to `1, and yields to the dispatched child

by select. When the client process publishes any notification to the coordinator,

the coordinator unblocks, preempts the client process, and lowers the client system

priority from `1 to `3.

4.4.3 Client Process Implementation

A client process is an external main function program that must provide facilities

for opening the shared buffer, for sending read, write, and idle notifications on

prescribed channels, and for executing its own computation code. A client process

must be preregistered with the simulation such that it is linked to the corresponding

dynamic body, is described as a controller or planner, is classified as either periodic

or best-effort, and has IPC facilites prepared. Forking the coordinator and executing

the external program, inserts the external program into the process space of the

coordinator as a child process and inherits the established IPC channels. Notifications
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of process reads indicate requests for simulation state (e.g., reading sensor data). The

coordinator services these reads using shared memory to pass data. Client process

writes correspond to either a controller sending commands to actuators, which are

interpreted to manipulate dynamics state, or correspond to a planner sending the plan

to the controller via the coordinator. Finally, client processes send idle notifications

to the coordinator to yield until the next activation (e.g., for periodic controllers).

4.5 Comparisons Between Conventional and Temporally Consistent Sim-

ulators

We carried out multiple experiments using our temporally consistent simulator at

different phases of development. After we implemented support for real-time client

processes but before we implemented support for non-real-time client processes we

used a simple pendulum swing-up scenario to compare performance between a con-

ventional callback simulator and our time consistent simulator. After implementing

support for non-real-time client processes, we experimented with a reactive planning,

predator-prey inspired scenario to demonstrate the true temporal cost of planning

and the time sensitive relationship between planner and controller.

4.5.1 Experimental Comparison of a Pendulum Swing-Up

We assessed the time consistency of a callback simulator and our time consistent

simulator using a PD controller to perform the swing-up and balancing tasks from

the downward equilibrium point for a simple pendulum. Our experiments were run

on Linux kernel 3.2.0 (“vanilla” Ubuntu 12.04) using a 2.80GHz Intel Xeon quad-

core processor. We used ROS Groovy Galapagos for all ROS-based experiments and

Moby [14] as the dynamics library; we did not use methods for simulating perception.

Conventional Callback Simulator Analysis. To gauge the performance of sim-

ulators that use the callback model, we developed a PD controller via a ROS service

56



that interfaces to Gazebo. We then evaluated the system-time of the control code

activation with respect to Gazebo simulation time. For each simulation iteration,

the controller computes and submits motor torques as a function of pendulum joint

position and velocity. We recorded the simulation time (i.e., the virtual time accord-

ing to the simulator) on each controller invocation, and we recorded the CPU time

spent in the controller by querying system /proc statistics for the controller.

This experiment shows that for every second of system time that the controller

runs, Gazebo advances simulation time approximately 1/10th of a second. Our

results demonstrate that Gazebo and callback based simulations in general do not

maintain real-time system requirements, and therefore controllers designed and tested

exclusively in callback based simulations will not match real-world operation. The

practical implication of this finding is that controllers that need to synchronize actions

to time ( i.e., controllers that are tightly coupled to time) cannot be expected to exhibit

identical performance in simulation and in situ.

Figure 12 shows the disparity between the system time made available to the con-

troller and the time maintained by the simulator. Figure 13 shows the instantaneous

change in observed time between the controller and the simulation. We note that

not only is there a disparity between controller and simulator times, but that this

disparity changes over time (indicated by the derivative being far from zero).

Temporally Consistent System Analysis. As a second experiment, we imple-

mented the PD controller for the pendulum swing-up and balancing tasks under our

temporally consistent system using the TCS branch of the Moby simulator. The PD

controller was to operate at a frequency of 1000Hz over 10,000 simulation cycles. The

simulation time was maintained by the Coordinator.

Figure 12 shows that over the course of the simulation, dynamic scheduling of

the controller guaranteed control code to operate at the expected frequency within a

57



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

time (according to controller)

tim
e 

(a
cc

or
di

ng
 to

 s
im

ul
at

or
)

Time parity between controller and simulator

 

 

Callback model
Time consistent system

Figure 12: Temporal Comparsion of Conventional and Temporally Consistent Simu-
lation

Data plot (see Section 4.5) using the callback model with Gazebo (blue/solid) and our
temporally consistent system (red/dashed); the latter exhibits exactly the behavior we
were seeking. The callback model data shows that Gazebo advances approximately
1/10th of a second for every second that the controller advances (and thus we should not
expect simple transference from simulation to in situ).
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Figure 13: Instantaneous Temporal Disparity of Conventional Simulation

Plot depicting instantaneous changes in time disparities using data plotted in Figure 12;
note that the disparities slowly decrease over time.
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Figure 14: Aggregate Relative Error in Temporally Consistent Simulation

Plot depicting aggregate relative error (with respect to virtual time) with our temporally
consistent system. Our initial system (without the correction mechanism described in
[66]) exhibits some drift. Our system with the correction mechanism exhibits very low
relative and absolute error (less than 2% absolute error over the entire 100s simulation).

small (under 2%) margin of error.2 Figure 14 shows that the aggregate relative and

absolute errors are small (although a controller may overrun its interval by as much

as 2%); the plot shows that relative error is an error of magnitude greater without

the corrective method.

The experimental data shows that the temporally consistent system is indeed

consistent with time. Additionally, we note that the system allows us to effectively

time control loops and thus, by testing, guarantee—again, to a 2% margin of error—

that a control loop will run within its allotted time when moved to a real-time OS

(assuming comparable hardware).

2In the initial temporally consistent simulator development, we had not implemented the hier-
archical scheduler and instead used a relatively simple system to correct temporal drift [66]. The
hierarchical scheduler described in Section 4.4 eliminates the need for drift compensention.
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4.5.2 A Demonstration of Temporal Consistency: Predator and

Prey

This experiment is intended to illustrate the performance discrepancy between

systems using callback functions and our time consistent system when non-real-time

client processes are integrated into the system. The experiment has been designed

to reflect our experience with building software for both simulated and physically

situated robots; this decision results in a few discrepancies between the time consistent

and callback-based systems that will be noted below. The time consistent simulator

described throughout the remainder of this section relies on hierarchical scheduling

as described in Section 4.4 and does not require any drift compensation.

Our experimental scenario uses a predator-prey scenario with two identical “space

ships” (i.e., rigid bodies moving freely in SE(3) via application of forces). The ships

are constrained to move within a cubic region of space; when a ship attempts to move

out of this region, a spring-like penalty force pushes it back toward the free region.

Predator and Prey Behavior. The prey is driven by a simple control policy,

which enacts either a random walk (we save the seed so that we can reproduce the

walk across trials) or a fleeing behavior, depending on the distance of the predator.

The prey flees by moving directly away from the predator using limited force.

The predator uses kinodynamic planning to chase the prey by exploiting the lat-

ter’s deterministic behavior when the predator gets sufficiently close. Indeed, given

ample planning time, the predator should be able to plan to intercept the prey by

using the prey’s deterministic movement model and an inverse dynamics model (that

determines the requisite forces to achieve a target acceleration).

Planning and Control. We instituted our own kinodynamic planning mechanism

which applies controls, integrates its models of the predator and prey forward in

time, and finds a plan that brings the predator closer to the prey. Our initial efforts
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used OMPL, but the inherent multi-threaded nature of the library and its use of

wall-clock time for determining when the planner should terminate confounded our

system’s efforts to schedule the planning process. Using wall-clock for process timing

assumes that the process will not be scheduled-out, so the planning time parameter

in running OMPL in the context of a real-time system can only be considered an

idealized upper bound. The planner is allowed to execute for a maximum time (1.0s)

and the resulting plan is not executed beyond a maximum duration (0.1s); beyond

this point the open loop execution of the plan by the predator tends to lead to it

becoming dynamically unstable.

The planner is called differently on the time consistent and callback-based systems.

On the callback-based system, the planner is called only when all of the commands

from a previous plan have been executed (or the plan has become stale by going over

the maximum allowable duration). The time consistent system calls a planner in a

manner analogous to operation on a real robot: ()before a plan arrives, the predator

executes “no-op” commands (i.e., it applies no force and no torque); () the planner

attempts to find a plan (the predator continues to execute “no-op”s at this time); ()

when a plan is found, the predator begins executing the plan and immediately calls

the planner to begin planning again; () the planner keeps executing that plan until

the sequence of commands is complete or the planner notifies the controller that a

new plan is available.

The predator controller uses a composite feedforward (i.e., the planned com-

mands) and negative-feedback controller to account for error between its current

state and the desired outcome. The prey uses a simple control policy only.

Temporally Consistent and Callback-Based System Configurations. The

time consistent system was built on top of an otherwise unmodified version of Moby.

For comparison we used two callback-based systems, “vanilla” Moby and Gazebo/ODE.
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Each simulation was run with a 0.01s dynamics time step, a maximum planning time

of 1.0s, a planning step size of 0.01s, and both controllers running at a frequency of

100Hz. Our experiments were run on Linux kernel 3.2.0 (“vanilla” Ubuntu 12.04)

using a 2.80GHz Intel Xeon quad-core processor.

Experimental Specifications. All scenarios start in the same configuration with

the predator and prey halted and separated by ten meters and a flee triggering dis-

tance of five meters. Scenarios were simulated for twenty seconds of simulation time,

and each experimental trial consisted of running the scenario with identical random

seed for the prey using the three systems: Gazebo, “vanilla” Moby, and modified

Moby (the time consistent system).

Experimental Analysis. The results of our experiments, depicted in Figure 15,

show that the simulations based on the callback model yield virtually identical sta-

tistical behavior while the time consistent simulation exhibits dissimilar behavior.

Because the simulation state is frozen during planning in the callback model simula-

tions, the predator is consistently able to plan from its current state to the current

state of the prey, which allows it to maintain close proximity at nearly all times. The

statistical distributions for the callback-based systems are centered within the flee

triggering distance with a maximum distance equal to the initial distance. In the

time consistent simulations, the predator is able to approach the prey for only short

durations and the statistical distribution is centered more closely to the starting dis-

tance and exhibits high variance. Animated renderings of the simulations show that

the predator tracks the prey very closely in the Gazebo and “vanilla” Moby simu-

lations while the predator generally undershoots or overshoots the prey’s position in

the time accurate system.

The predator in the callback-based systems is able to maintain much smaller

distances to the prey solely because the predator’s planner is able to execute propor-
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Figure 15: Instantaneous Distance Between Predator and Prey

Histogram showing the instantaneous distances between predator and prey over ten trials
(2,000 samples per trial). Systems based on the callback model are effectively able to plan
while the predator and prey are frozen in time, while the time consistent system must
plan and act in real time. Consequently, the predator is able to stay much closer to the
prey in the systems based on the callback model.
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tionally for much longer without the danger of plans becoming stale. At the end of 20

simulated seconds, the planner in the traditional callback-based systems consumed

on average 188 seconds, thus yielding ∆ = 168.01 seconds. The ratio of planner

execution time (1.0s) to planner frequency (0.1s) indicates that the planner runs for

10 times longer per second than the simulated time progresses and approximates

∆ = 10t. In contrast, ∆ = 0.003 seconds for the time consistent system; though ∆ is

non-zero (due to intrinsic hardware limitations), its value is independent of the time

that the simulation runs.

In a follow-up experiment, we measured the overhead of our components for en-

forcing temporal consistency. For a single trial, the overall system ran twenty seconds

of simulation time in a real-time of 21.22 seconds during which the system spent 0.42

seconds coordinating, 20.21 seconds running planners and controllers, and 0.59 sec-

onds stepping dynamics. From this result, we estimate our framework adds 2% of

overhead, which we argue is acceptable.

4.6 Future Work in Temporally Consistent Simulation

The need for temporally consistent simulation has become a topic of discussion anec-

dotally and in published research. At least one research effort has implemented a

temporally consistent framework [47] using the same fundamentals such as propor-

tional progress and centralized coordination. Their research effort differs in that it is

attempting to produce a temporally consistent distributed simulator.

For future work, we will increase time accounting accuracy by detecting uncon-

strained blocking system events (which most non-real-time software triggers) and

client process unblocking events (which will allow us to better support existing li-

braries like OMPL without requiring modifications to the libraries themselves). To

take full advantage of current system architectures, we will also scale the coordinator

scheduling system to utilize multiple cores and multiple processors. We will sup-
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port simulations for which time does not proceed monotonically (like those that use

adaptive integration).
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Chapter 5- Validating Simulations Involving Contact and Friction with
a Wild Robot

Interactive robotics tasks such as grasping and locomotion are contingent upon

contact and friction. While dynamics simulation of ballistic rigid body motion is

well known to be generally consistent with natural behavior, simulations involving

contact and friction are prone to producing physically implausible results. Given that

the contact and friction models have been validated by mathematicians, physicists,

and engineers on simple systems over centuries of study, one must wonder where

the software that implements these models fails. Indeed, the past decade has seen

the continual release of new simulation software libraries, each of which promises to

eliminate the artifacts but in hindsight has improved the status quo little, if any.

To validate simulations involving contact and friction, roboticists require data

from real world systems that are subject to complex dynamics yet simple enough to

comprehensively study. While a scenario involving a block on an inclined plane [57] [7]

is a meaningful verification scenario or a potential validation scenario for coulomb

dry friction, this scenario alone can not be relied upon to entirely validate contact

and friction. Roboticists need simple enough scenarios, i.e. low state space and

measurable, that focus on contact and friction but complex enough that they are

difficult to simulate without accurate models, i.e. wild behavior. An ideal scenario

consists of a robot with few degrees-of-freedom, has a primitive collision model (a

sphere is the simplest and most reliable collision primitive), and can be modeled with

a high degree of accuracy.

This chapter details a validation scenario for multi-rigid body dynamics by study-

ing a mechanically simple but highly dynamic, real-world robot whose motion is

primarily driven by contact and friction. This study involves examination and mod-

eling of the robot, recording state data from the robot in situ, error correction of
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recorded data, simulation of the robot, and examination of a novel, machine learning

validation approach for this scenario. We believe that successful simulation of real-

world robot behaviors such as the robot in this scenario will lead to better robotic

simulation, because we have found little qualitative agreement between the robot’s

observed behavior in simulation and in situ, even though this robot seems well modeled

by a multi-rigid body system.

5.1 The Weazelball is a Wild Robot

(a) (b)

Figure 16: The Weazelball

(a) An off-the-shelf Weazelball. (b) “Forward” velocity v develops from friction
between shell and environment due to angular velocity ωs, a response to the torque
generating pendulum angular velocity ωp.

This chapter studies the validation problem for the aforementioned domain using

an inexpensive, widely available toy. Mechanical toys producing esoteric physical phe-

nomena have influenced dynamics research for years. Examples include the drinking

bird toy, which helped validate thermodynamic simulations [30], the woodpecker toy

studied by Pfeiffer [51] that was used to construct and validate rigid body impact

models [52], and the rattleback toy used to validate multibody dynamics simulations

with contact and Coulomb friction [45].

The subject of our investigation is a spherical robot called a Weazelball (Wb),

shown in Figure 16(a), which meets a variety of desirable criteria: wide availability,
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low cost, simple mechanism, and complex (wild) behavior. It has been the subject

in a number of research efforts focused on controlling aggregate behavior of “wild

bodies” [6] [5] [26]. The Wb basic principle and design was patented more than a

century ago [70], operates by a combination counter-torque drive and offset center-

of-mass, and is both underactuated and nonholonomic. A motor drives a bob around

an axis fixed inside a spherical shell. Producing a torque to rotate the bob also

produces a response counter-torque that rotates the shell in the opposite direction.

Friction between the shell and environment causes the Wb to roll “forward” relative

to the rotation of the bob. Figure 16(b) illustrates the relationship between bob

angular velocity, shell angular velocity, and shell forward velocity. In an unconstrained

environment, counter-torque drives the robot forward with respect to the rotational

motion of the bob due to friction between the shell and the environment, and the

robot wobbles from side-to-side due to rotation of the bob’s offset center-of-mass

around the shell’s center. A situated Wb tends to roll forward when unobstructed

and may undergo wild direction changes reminiscent of pirouetting, rocking, and

tumbling upon collision with an obstacle.

Due to the wild behavior of the Wb, we do not expect simulations to be able

to reproduce medium- or long-scale telemetry data of the physically situated robot,

though we do believe it is possible to capture Wb behaviors qualitatively within

simulation. Rather than comparing telemetry data, Wb simulation might instead be

validated by comparisons such as whether the characteristic wobble is evinced and

whether the exploration is ergodic. We propose a novel, regression-based validation

scheme to avoid the need to classify and locate such behaviors.

5.1.1 Anatomy of a Weazelball

The shell and bob are the two primary Wb components and consist of a number

of smaller parts. The shell consists of two hollow hemispheres and an o-ring. The
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Figure 17: Interior View of the Weazelball

The interior view of the “free” hemisphere (left-yellow) and the “fixed” hemisphere
(right-red)

hemispheres thread together to form the shell and the o-ring sits in a groove along the

seam formed by the hemispheres. The bob consists of plastic housing, AA battery,

metal weight, plastic gearing, switch, small screws, wire, and DC motor. We call the

Wb bob the motor assembly. Unthreading the shell separates the Wb into two pieces:

one hemisphere joined to the motor assembly and a hollow hemisphere. We use the

terms fixed hemisphere to refer to the hemisphere joined to the motor assembly and

free hemisphere to refer to the hollow hemisphere. Figure 17 shows the separated

Wb. A metal pin cast into the pole on the inside of the fixed hemisphere acts as

mount for the motor assembly. The actuator is formed by a gear mounted on the

pin and a simple gear train connected to the motor. A port cast into the pole of the

free hemisphere accepts the power button on the motor assembly which enables the

switch to be toggled without opening the Wb. The motor assembly rotates around
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Figure 18: The Weazelball as modeled by Solidworks

the polar axis when the switch is closed.

5.1.2 Modeling the Weazelball

We model the Wb kinematically as two links constrained together by a continu-

ous revolute joint. We model the shell’s inertia as a hollow sphere with a diameter

of 82mm, a thickness of 3mm, a mass of 46g, and a center-of-mass located at the

center of the shell. Because the motor assembly consists of a number of components

with odd shapes and significantly varying densities, modeling the motor assembly as

a primitive with uniform density is insufficient. We model the motor assembly using

Solidworks instead, refer to Figure 18. Solidworks allows parts with different

material densities to be modeled individually and then combined into a single assem-

bly. Solidworks also allows an assembly to be queried for a single inertial tensor

and center-of-mass with respect to a user defined reference frame. Rather than mod-

eling every part in the motor assembly, we simplify by categorizing parts into three
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groups of solid components: battery, weight, and housing. We measure the battery

and weight and model them individually. We measure the housing, motor, and all

other parts as a single component with homogeneous density. We measured the mass

of the battery to be 24.2g, the mass of the weight to be 23.6g, and the mass of the mo-

tor assembly to be 38.7g. We assembled the components and queried Solidworks

for the inertial tensor and center-of-mass using the center of rotation as the center

of the inertial frame. We generated COLLADA files (DAE format) for visualization.

We provide all modeling data generated through Solidworks in the repository.

5.2 Measuring Weazelball State

Simulation validation relies on analyzing state data, so accurate estimates of Wb

telemetry data are desirable. An off-the-shelf Wb is not designed for state measure-

ment. The shell has few features that can easily be tracked and the opaque shell

obscures bob state. Modifications to the Wb can be expected to alter the dynamic

behavior. For example, adding instrumentation changes mass distribution and adding

new features to the shell alters surface geometry and friction characteristics, which

may be expected to modify contact behavior. We must accept that some modifica-

tions are necessary to measure Wb shell and bob state, so we select modifications

to minimize changes to mass distribution and surface features and to maximize re-

producibility in the data gathering process. This section describes the measurements

conducted to measure the state of the shell and the state of the bob.

5.2.1 Estimating Weazelball Shell State Using Vicon Motion Cap-

ture

We use a Vicon array to track the Wb as it moves, which allows us to capture the

pose of the Wb shell over time. We set up a Vicon array consisting of sixteen motion

capture cameras focused into a cube of space two feet above the ground and roughly

six feet on a side. Figure 19 illustrates the camera arrangement we use to support this
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Figure 19: Vicon Configuration For Weazelball Motion Capture
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work. In the center of this space, we marked a large, orthogonal central axis on the

floor. Around the central axis, we arranged cameras focused on a point approximately

4ft from the floor into three rings: a high-level ring with cameras focused downward,

a mid-level ring with cameras focused level to the floor, and a low-level ring with

cameras focused upward. We include six cameras in the high ring, four cameras in

the mid ring, and six cameras in the low ring.

We selected our camera arrangement to share one camera calibration between two

activities: model registration and motion capture. We define model registration to

encompass all tasks involved with developing a Vicon tracking model, discussed in

the following paragraph, and we define motion capture to encompass all tasks involved

with gathering motion data from a subject. Calibrated cameras may be deactivated

and reactivated into the active camera set without the need to recalibrate the array

(as long as the cameras are not moved).

A Vicon “tracking model” consists of the set of markers registered with the

Vicon system for a given subject and is used by Vicon to derive a subject’s pose

from the pattern of markers detected by the array. The reference frame for the

tracking model, i.e. the model frame, is defined by a combination of the position of a

manually assigned “center” point and the orientation of the array’s origin at the time

of model registration. A tracking model must be defined by a unique arrangement

of markers in order for Vicon’s Tracker software to be able to accurately localize

the subject. If two pairs of markers have the same approximate Euclidean distance,

Vicon will localize the tracking model with an arbitrary pose relative to one of the

marker pairs. During registration, if Vicon detects a marker arrangement where

more than two markers have the same approximate distance, the system will warn

of a symmetric tracking model. A minimum of three markers must be visible to the

array when a sample is recorded; otherwise, Vicon either will record a pose with an

incorrect orientation or will fail to record a pose.
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We activate all cameras when registering the Wb tracking model, and we activate

only the high and mid cameras during motion capture. We call the cameras used

for model registration the registration array and the associated reference frame the

registration frame and the cameras used for motion capture the capture array and the

associated reference frame the capture frame. The high and low cameras allow Vicon

to detect markers on the Wb from above and below without the need to manipulate

the Wb during model registration. The low cameras are deactivated in the capture

array because they are occluded by the environment.

A standard, spherical motion tracking marker is unsuitable for the Wb as placing

spheres, even small ones, on the surface of the Wb vastly alters its locomotion. We

use flat retro-reflective tape instead. Tape does modify contact parameters but the

impact on locomotion seems much less than that from using spherical markers. We

observed that the tape marked Wb behaves similarly to an unmarked Wb.

Marker visibility is predominantly subject to occlusion, i.e. where a marker is

occluded from a camera by an opaque object. Marker triangluation accuracy increases

as the number of cameras detecting the marker increases. A Vicon array works best

with a marker detected by at least three cameras but will still attempt to “triangulate”

a marker detected by two cameras. If fewer than two markers are detected by the

array, Vicon will not record state.

In lieu of spherical markers, we cut retro-reflective tape into circular markers

12mm in diameter and applied them to the shell. We attempted to minimize the

markers’ impact on contact properties by using small markers in small numbers.

When a flat marker is applied to the shell, the marker forms a dome. We found that

a dome marker is less visible than a spherical marker, and a given dome is very often

occluded to most cameras. To compensate for reduced marker visibility, we posed

cameras to maximize overlap between fields-of-view; we also distributed cameras to

maximize viewing angles. Given a sufficient number and distribution of cameras and

74



markers, we found that the array can maintain continuous localization of the shell

with error that we can correct with minimal assumptions, see Section 5.5.

When we tested our initial motion capture process, we discovered a significant

amount of error from the motion tracking model. Our initial array included top down

perspective cameras only, which required rotating the Wb to add new markers to the

tracking model. Using this approach, we were only able to add five markers before

Vicon detected a symmetric tracking model. With such few markers and using only

top-down perspectives, we found () that Vicon recorded a large number of samples

where the orientation of the Wb was arbitrarily rotated about two markers and ()

that Vicon frequently lost track of the Wb entirely due to too few markers being

visible. We also found that grasping the Wb during registration did not allow us to

reliably determine the transform from the registration frame to the model frame; this

problem made it extremely difficult to objectively determine the pose of the Wb from

Vicon data. To reduce these sources of error, we incorporated a rigid stand, detailed

in Section 5.3, into the registration process, and we added the mid- and low-level

camera rings.

5.2.2 Measuring a Weazelball’s Hidden Actuator State

Wb behavior is a product of counter-torque generated by the bob/motor assembly,

the rotating offset center-of-mass, and contact/impact between shell and environment.

The state of the hidden motor assembly drives much of the Wb behavior. We con-

sidered a number of methods to capture motor assembly state, including adding an

IMU, inserting an encoder, and casting a transparent shell; however, we expected

each of these alterations to affect dynamic behavior by significantly changing inertia

and friction.

We chose to capture motor assembly state by adding a simple, lightweight circuit

to the Wb that generates a visible light signal each time the motor assembly completes
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Figure 20: The Weazelball Signal Circuit

a cycle. We added a high definition (HD) camera to our experimental setup to

record signal events (LED flashes) generated by the circuit. The signal circuit is

an independent circuit powered by a 3V button-cell battery. The circuit consists of

the button-cell battery, a red LED, a resistor, and a small length of copper wire.

We attached the button cell to the motor assembly and rigged the circuit so that

leads from the button cell contact the LED leads on each revolution of the motor

assembly (and at a consistent position of the motor assembly). The circuit increases

the mass of the motor assembly by 5.9% which we consider a minimal change to the

motor assembly inertia. Figure 20 shows a diagram of the circuit and an image of the

installed circuit.

We mounted the LED by boring a small hole through the free hemisphere at

a dimple located near the power button port. We found the light emitted by the

LED is directly observable when the shell is viewed from almost any angle where the

switch is visible, and the light is indirectly observable due to LED light reflecting

from surrounding surfaces.

During each motion capture session, we record video of the Wb using the HD

camera at 30 frames per second to capture LED signals. We then post-process our
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data to synchronize each video with Vicon pose data by manually examining each

frame for a signal event, recording the frame number of such a signal event, and

classifying the signal event. We compute the angular velocity of the actuator from

the interval between signal events and the video frame rate, and we use the frame of

the initial signal in an interval to establish a zero joint angle. From this information,

we interpolate the angle and velocity of the actuator over each interval where we

detect a signal. Because the motor assembly is constrained to the shell by the joint

formed by the actuator, we derive comprehensive state of the Wb given state of the

shell and state of the actuator.

5.3 Additional Instruments for Weazelball State Measurement

We used a number of additional instruments in our motion capture arrangement. To

confine the area in which the Wb could roam and consequently the amount of space

covered by the Vicon system, we constructed an enclosure that we can consistently

align and orient to the array. After executing a preliminary motion capture session,

we added a number of cameras to the array and a stand to which we mount the Wb

during model registration. The addition of the cameras and stand are to correct a

number of errors associated with the marking method used. We also combined replay

visualization of Vicon data with HD video to synchronize between the two data

streams.

5.3.1 Calibrating the Weazelball to Improve Vicon Tracking

Introducing a stand, i.e. a modified camera tripod, to suspend and fix the Wb during

model registration facilitates finding a non-symmetric tracking model through using

an increased number of markers. Suspending the Wb during registration allows us to

add the low-level camera ring which improves the likelihood of establishing a tracking

model that is detectable from any Wb orientation. Fixing the Wb allows us to

determine the transform from model frame to capture frame. Figure 21 illustrates
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Figure 21: Stand Placement in Registration Array

the positioning of the stand in the registration array. We activate all three camera

rings in the registration array. With the additional cameras and the Wb mounted to

the stand, we are able to apply markers to any point on the shell without manipulating

the Wb. We find that marker configurations and tracking models developed using this

approach lowers tracking error. These adjustments enable us to significantly reduce

localization errors compared to our initial approach that did not use the stand-derived

marker placement.

The Vicon reference frame orientation is nominally inherited by the tracking

model when that model is registered. We find that if the Wb lies in an arbitrary

orientation during registration, the transform from registration frame to capture frame

is difficult to determine. By mounting and aligning the Wb to the stand, we are able

to identify this transformation. We align the stand to the central axis by centering
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Figure 22: Illustration of the Stand Alignment Procedure

the stand to the central axis origin using a plumb bob and then we rotate the stand

until one leg is aligned with an axis. We align the tripod head to the axis-aligned leg

by panning the head until the head is plumb with the leg. Once the pan degree-of-

freedom is aligned, we level the head with tilt and leg length adjustments. Figure 22

illustrates alignment of the stand with the central axis.

We align the Wb to the stand using features that we added to the tripod and to

the Wb. To mount the Wb, we attach a clamp with a notch to the tripod head. We

align the notch to the axis-aligned stand leg by tilting the tripod head, suspending a

plumb bob through the notch, and then panning the tripod head until the notch is

plumb with the center of the leg. We level the tripod head and confirm the head is

level in both axes. If the head is not level, we adjust the height of the legs until the

head is level. We mount the Wb to the stand mounting plate using the hardware and

procedure detailed in Figure 23. We align the Wb to the clamp using a pen mark A

drawn in an arc across the free hemisphere from the center C of the Wb port to the

shell equator. Mark A is drawn across the equator onto the fixed hemisphere, and we

label the mark on the fixed hemisphere A′. We use A to align the shell to the stand
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and we use both A and A′ together to realign the shell hemispheres to each other

whenever we open the Wb for servicing. When mounting the Wb, we rotate the Wb

until A aligns with the notch. Figure 24 illustrates the registration frame origin and

the alignment of A to the stand. We choose to mark A to align with the joint angle

where the motor assembly closes the signal circuit so that we can assign that joint

position as the zero position.

5.3.2 Enclosing the Weazelball During Motion Tracking

We designed a square, inset enclosure (similar in appearance to a table) illus-

trated in Figure 25 to limit the area needed for camera coverage and to ensure the

Wb remains as observable as possible during motion capture. The enclosure is ap-

proximately 4ft on a side and 2in “deep”. The 4ft surface is large enough for the

Wb to reach maximum velocity and exhibit characteristic behaviors, and the enclo-

sure is also small enough that the cameras’ fields-of-view overlap (as necessary for

motion capture). The enclosure depth is greater than the Wb radius, i.e. 41mm, to

prevent the Wb from leaving the enclosure, but the enclosure depth is also shallow

enough so that camera placement is not limited to top down perspectives. Due to

our marking method, we found that a number of cameras must overlap fields-of-view

from many directions. We also found that several cameras must be positioned low

enough to track markers close to the enclosure surface, which motivated us to add

the mid-height camera ring.

During construction, we cut small notches on top of and at the center of each

rail that frames the enclosure. These center notches serve two purposes: they enable

the enclosure to be aligned with the central axis and they enable the center of the

enclosure to be set as the capture frame origin.

We set up the enclosure using the following steps. First, we placed a small,

commercially produced table over the central axis (henceforth denoted the “base”).
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Figure 23: Front View of the Weazelball Mounting Process

We mount the Wb to the tripod such that A and A′ are colocated and AC aligns to the
aligned tripod leg which aligns AC to the registration frame. We modified a standard
tripod mounting plate (a) to accept a 2-1/2in. bolt (b) and we cut a 2mm notch into the
threaded end of the bolt. We thread two retaining nuts (c), a locking washer (d), and a
third nut with a centered notch (e) onto the bolt. We align (e) with the notch in the bolt
and align the notch in the bolt such that the notch is perpendicular to the front of the
plate. The notch in the bolt accepts the plumb line for aligning the head of the stand with
the aligned leg. We then tighten retention nuts (c) to prevent rotation of (b) and (e).
Once we align the stand to the registration array, we remove the mounting plate from the
stand, mount the Wb to the mounting plate, and return the mounting plate to the stand.
To mount the Wb, we unthread the shell, place the free hemisphere (f) onto bolt (b) by
inserting the bolt into the port such that (f) rests on (e), clamp the free hemisphere to the
bolt with nut (g), remove the plastic cover on the motor assembly that contains the
plastic nipple used to actuate the switch, thread the fixed hemisphere (h) onto (f) aligning
A′ with A, and align AC with the notch in the face of (e)
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(a) (b)

Figure 24: Illustration of the Tracking Model Reference Frame

(a) We assign the registration frame origin to the central axis and, once the stand is
aligned, we mount the Wb to the stand. (b) The model frame origin position is manually
assigned but the orientation is inherited from the registration frame origin. By aligning
mark A to the stand, we are able to transform a fixed point on the shell to any pose
recorded by motion capture

We then placed the enclosure on top of the base. Next, we aligned the enclosure to

the central axis. Finally, we leveled the enclosure by inserting shims between base

and enclosure until the enclosure is level at the center and in all four quadrants.

We aligned the enclosure to the central axis by suspending plumb bobs from the

center notches and then adjusting the enclosure’s pose until it is plumb with two

axes of the central axis. We assigned the capture frame origin to the enclosure center

by suspending mason’s line between center notches and then aligning the wand with

the intersection of the line. Figure 26 illustrates alignment of the enclosure with the

central axis and positioning of the wand.

5.3.3 Visualizing Weazelball State Data in Gazebo

We used Gazebo to visually review streamed Vicon state for two purposes: ()

to reduce error in data collection, and () to synchronize between Vicon data and

HD video data. We used the Solidworks COLLADA Wb models as a visual model.
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(a) (b)

(c)

Figure 25: Enclosure Model

Enclosure model: (a) top view with visible center notches for alignment; (b) bottom view
with angle braces used to square and reinforce the enclosure corners; (c) exploded view
shows enclosure construction
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Figure 26: Illustration of the Motion Capture Configuration

We activate the high and mid camera rings in the motion capture array. We deactivate
the low camera ring because the cameras are occluded by the enclosure. We aligned the
enclosure by using plumb lines suspended from the center notches. We centered the wand
to the enclosure using mason’s line suspended between center notches and then assigned
the array origin. We set up a HD video camera with a clear view of the enclosure to
record signal events from the motor assembly
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We used a Gazebo plugin to read Vicon state and to update the Wb model toward

replaying captured data. We have found that replay visualization allows us to assess

the quality of Vicon camera and Wb marker configurations. Through such replay,

we found that the configurations of the array and markers have significant impact

on the amount of error introduced into the data generated by the motion tracking

system.

5.4 Capturing Weazelball State

We found that our motion tracking method requires careful planning and testing of

both the Vicon array and marker arrangement to capture accurate data. Through

an initial data collection experiment, we noted that casual arrangements of either

cameras or tracking markers result in obvious, unpredictable, and difficult to correct

errors in capture data. These errors seem to result from having too few markers visible

to too few cameras. To minimize such errors, we focus a large number of cameras

into the experimental space while varying the camera heights to increase marker

detectability, and we use a systematic approach to model registration. We also found

that by testing Wb motion capture and by visualizing the test data, we were able to

tune camera and marker placement to reduce errors in the collected session data. We

executed motion tracking using the Vicon Tracker application which is designed

for tracking rigid bodies. For each sample taken by Vicon, Tracker maps the

pattern of visible markers to a tracking model registered with Tracker, computes

the pose of the model, and streams data for recording by another process.

5.4.1 Registering the Weazelball Shell with Vicon

Our registration process uses the following steps. We align the wand to the central

axis and then assign the array origin frame to the wand3. We replace the wand with

the stand and align the stand to the central axis. We mount and align the Wb to the

3Our registration frame was rotated 180◦ around the z-axis with respect to our capture frame.
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stand. We apply a marker to the shell and register the marker to the current tracking

model through Tracker, which the software then validates. Tracker may report

that the new marker results in a symmetric tracking model. If a symmetric model is

detected, we remove the marker, delete the current tracking model, and register all

markers previously added (we must delete and re-register the tracking model because

a previous marker arrangement may now be detected as symmetric, thereby forcing us

to remove markers until Vicon accepts a valid marker configuration). Once a valid

marker configuration has been established, we repeat the marker addition process.

We were able to add a total of eight markers to the Wb using the process, and the

resulting tracking model was tracked unambiguously for nearly all samples captured.

5.4.2 Capturing Weazelball Shell State Using Vicon

Our motion capture process involves switching from the registration array to the

capture array, aligning the enclosure to the central axis, assigning the capture array

origin, aiming the HD video camera, and streaming data from the capture array.

Before gathering session data, we gather and visualize test data. If the test data

exhibits obvious visual artifacts, we repeat model registration to improve the tracking

model. Before the Wb is brought into the enclosure, we cover the Wb with an opaque

bag. Vicon streams data whenever a tracking model is detected, and using the bag

reduces occurrences of premature detection.

We executed session collection using the following procedure: we place the Wb

into the bag, we start recording Vicon, we start recording HD video, we power on

the Wb, we place the bag into the enclosure, we release the Wb from the bag (and

remove the bag from the enclosure), and we record data for the allotted time. Once

the session time has elapsed, we stop recording both Vicon and video. We carried

out a total of ten collection sessions to develop initial sample data. Each session

lasted approximately two minutes and was recorded using a 100Hz Vicon array and
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a 30Hz HD video camera.

5.4.3 Video Recording Hidden Weazelball Actuator State

We wish to capture as many signal events from the LED circuit as possible. To

ensure that the earliest signal events are visible to the HD camera, we release the Wb

at a pose determined relative to the camera’s pose. We place the HD camera on the

side of the enclosure and center the enclosure’s center in the camera frame. When we

introduce the Wb into the enclosure, we orient the Wb so that the free hemisphere

faces the HD camera. We found that the Wb is very likely to continue moving across

the enclosure with the LED directly visible to the HD camera (at least until the Wb

collides with a wall) if the Wb is given a small initial forward velocity when released.

The Wb release pose is illustrated in Figure 27.

Figure 27: Releasing the Weazelball

When we release the Wb, we consider the positioning of the enclosure with respect to the
camera. The Wb will likely roll in the general direction of v if we release the Wb with
some initial forward velocity in the direction of v as long as the Wb model frame’s z axis
is roughly aligned with the camera view vector c

Each video frame contains a Wb reference pose and may contain evidence of

an LED signal event. We used the open source software tool melt to review each

video frame. melt supports frame-stepping video replay in our HD camera’s native

codec, thus permitting us to analyze HD video frame-by-frame. Using such frame-by-
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frame analysis, we detected and classified LED signal events, and we cross-referenced

video poses with visualized Vicon poses. Through these processes, we were able to

synchronize data and to validate Vicon measurements.

5.5 Estimating Weazelball State

After collecting session data, we process raw Vicon and video data to identify marker

detection error, to synchronize the data streams, to classify signal events, and to

estimate actuator state from video data.

5.5.1 Synchronizing Vicon Data and Video Data

Because our process generates both Vicon data and video data, it is necessary to

synchronize the two independent data sets to produce a single, unified data set. We

synchronize by reviewing video data until we identify a collision between the Wb and

at least one of the enclosure rails that results in the Wb coming to a stop. We then

step the motion capture visualization to the same collision and compare the video

reference pose with the visualized pose to synchronize the data. We compare the

visualized pose with the video reference pose and if they are the same we use the

current Vicon time and the current video frame number to compute a virtual time

basis shared by both data sets. Once the video and visualization are synchronized at

this collision, we record the frame number of the video and the time of the capture

visualization. We then backtrack to the earliest Vicon measurement where we can

identify no errors and use that state as the start of virtual time. We compute the

virtual time of all Vicon and video frames using the start of virtual time and the

sampling rate of the Vicon system and the frame rate of the video camera. For

each motion capture session, we record the following synchronization parameters: the

video frame number of the first collision that could be synchronized with Vicon

data, the Vicon time of the same collision in the Vicon samples, the total number
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of frames in the video, the frame rate of the video, the sampling rate of Vicon, the

start of virtual time in the Vicon data, and the video frame that matches the start

of virtual time. Figure 28 shows a synchronized frame from both visualization and

video replay.

Gazebo melt

Figure 28: Synchronized Weazelball Data

Two frames from a synchronized visualization show Wb state at a given time during
motion capture.

We found that differences between the recording rates of the Vicon system and

the HD camera used in the experiments makes perfect synchronization infeasible. We

also found that the video camera sensor type can produce artifacts in the video data

such as the afterimage of a signal appearing in the subsequent frame or the smearing

of moving objects in a single frame (due to scan latency). Though our data appears

cogent by visual inspection, future capture efforts should anticipate and compensate

for these issues.

5.5.2 Qualitative Assessment of Weazelball Behavior and Actuator

Data

We processed each video stream frame-by-frame to catalog each identifiable signal

event recorded by the HD camera. We define an identifiable signal as either a direct

observation of the lit LED or as an indirect observation of LED light reflected from
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the enclosure. We found a number of signal events were not identifiable due to

occlusion of the LED to the HD video camera and the LED being oriented such that

LED light is not noticably reflected by the enclosure; however, given an approximate

frequency of the motor assembly we infer that a signal should have been observed.

We denote such missing signals as a “gap”. Gaps may consist of the loss of one or

more signals. We chose not to attempt to infer the number of signals lost in gaps

because we discovered that motor assembly angular velocity varies with Wb forward

velocity, which would require more sophisticated modeling than our initial, constant-

angular-velocity assumption can provide. We also found that signals may span two

video frames with one of the two signals appearing weak; such cases suggest that the

signal duration is approximately equal to the frame rate of the camera plus some small

fraction of the frame rate. Table 2 summarizes the signals captured and classified for

all sessions.

Table 2: HD video LED signal detection

Session Identifiable Indirect Gaps Two-Frame Longest
Signals Signals Signals Observation (s)

1 249 73 31 39 8.9
2 242 64 32 29 7.567
3 215 37 38 22 4.433
4 232 46 29 18 7.8
5 225 50 34 20 10.33
6 207 35 27 22 8.367
7 265 68 41 46 6.533
8 271 101 37 54 9.567
9 249 58 33 31 6.2
10 265 82 37 39 9.567

Table 2 summarizes our classification of the signal data gathered during session collection.
Identifiable signals are the number of discrete signals identified on video. Indirect signals
are those identified through specular reflection. Gaps quantifies the number of times that
at least one signal should have been observed but no signal was detected. Two-frame
signals refers to the times that a single signal spanned consecutive video frames. Longest
observation is the longest period of time where signals are continuously observed
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5.5.3 Identifying Error in Weazelball State Data

Through visualization, we identified two anomalous behaviors in the raw Vicon

data as error indicators: () from one sample to another, the visualized Wb sponta-

neously jumps from the enclosure surface and significantly changes orientation with-

out any external force applied and () the visualized Wb oscillates between interpen-

etrating and floating above the enclosure surface. We refer to () as snap changes

and attribute these events to marker occlusion. We are able to significantly reduce

the frequency of snap changes by optimizing the position and number of markers and

cameras. We were unable to eliminate all snap changes through hardware optimiza-

tion, but we found that if these orientation errors occur with low incidence, they

are correctable through interpolation. We attribute () to a combination of errors:

error between the tracking model center and the physical center of the Wb (arising

from manual center assignment) and error from using dome markers. We are able

to mitigate the error in the center position by estimating the center of the tracking

model. Figure 29 illustrates error in the data gathered from Session 1. We focused our

analysis on the vertical component z of the Wb’s geometric center, which should be

equal to the Wb radius (ideally z = 41mm) and on change in quaternion orientation

∆θi = ||θi−θi−1|| between the current frame and the subsequent frame. Figures 29(a)

and 29(c) show that there are infrequent spikes in both z and ∆θi in corresponding

samples, there is error between measured mean z and radius, and there is noise in all

measurements.

5.5.4 Correcting Weazelball Orientation Error in Vicon Data

We attribute spontaneous snap change error events to significant (multiple marker)

occlusion. We found that snap orientation change incidence is subject to camera and

marker placement. We found that snap changes are infrequent for well-positioned

camera arrays, are infrequent for a sufficient number and arrangement of markers,
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(a) (b)

(c) (d)

Figure 29: Error Analysis of Weazelball Motion Capture Data

These plots reflect data gathered during our first session and are representative of data
gathered across all sessions. (a) Shows the vertical z component of each Vicon sample.
Because the Wb is spherical and never leaves the table’s surface, z should equal the Wb
radius; however, the error between mean and radius is pronounced and the signal exhibits
both infrequent spikes and substantial noise. The sign of the error between mean and
radius implies that the situated Wb interpentetrates into the table surface which is
physically impossible, and the spikes suggest that the Wb occasionally jumps from the
surface which is contradicted by video data. (b) A histogram of the vertical z component
suggests the samples have a Gaussian distribution. (c) A plot of the orientation change
between neighboring samples shows noise in orientation measurements and shares spikes
in the same samples with the vertical measurements. Spikes in orientation change suggests
that the Wb makes snap changes in orientation which is contradicted by video data. (d)
The Gaussian defined by measured vertical position does not fit the ideal. We expect
some error in measurements due to sensor noise, but highly accurate measurements should
result in samples tightly clustered around the radius. Characteristics of the vertical
position Gaussian, i.e. the wide bell, error between mean and radius, and the presence of
a number of outliers, suggest error in the raw signal data is a product of several errors in
the measurement system
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and occur primarily when the Wb enters a corner. We also found that it is feasible

to use interpolation to correct snap change events if their incidence is low. We use

large ∆θi to identify snap change events.

Our process to identify snap change events in a given session is as follows. We first

compute ∆θi between each Vicon sample and the subsequent sample. We derive the

mean µ and standard deviation σ from the distribution of ∆θi. We scan the set of

∆θ in order of samples and, if ∆θi is greater than µ+ 3σ, we record the index of that

sample as an outlying ∆θi. Each snap change event consists of at least two outlying

∆θ’s where the first in the sequence indicates Vicon has lost track of enough markers

to fit the correct pose to the Wb and the second in the sequence indicates that enough

markers became visible for Vicon to resume correct tracking. Typically each snap

change event consists of two outlying transitions; however, we did identify one instance

where Vicon recorded three transitions in the snap change event, i.e. a sequence of

two rapidly changing orientations but incorrect poses followed by a third transition

back to correct localization. Once we have identified samples containing outliers, we

step visualization to the sample and evaluate whether the Wb has undergone a change

in orientation that exceeds typical physical performance. If the change in orientation

is unrealistic, we record that sample as the beginning of the snap change event, and

then we step through the subsequent samples until we identify the sample where the

Wb returns to an orientation consistent with physical behavior. We then interpolate

between the start outlying sample up to the end outlying sample. Table 3 summarizes

the number of snap change events that we identified across all of the session data that

we collected.

5.5.5 Correcting Weazelball Position Error in Vicon Data

We attribute, at least partially, the oscillation anomaly and the offset between

mean and Wb radius demonstrated in Figure 29(a) to manual center assignment in

the tracking model. We found that manual assignment results in an unknown offset
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Table 3: Frequency of Vicon orientation snap change error events

Session Samples Mean σ 3σ Error Mean Samples
∆θ Events Error ∆θ Affected

1 12416 6.38 3.57 10.72 6 127.93 4
2 12464 6.38 2.86 8.58 6 68.10 3
3 12227 6.39 4.94 14.82 14 131.48 321

4 12377 6.32 4.35 13.03 8 148.01 5
5 12490 6.26 3.83 11.49 102 101.56 7
6 12311 6.29 4.29 12.88 8 147.56 8
7 12324 6.94 5.59 16.78 18 131.54 13
8 12590 6.60 4.43 13.29 8 146.05 8
9 12433 6.72 5.99 17.97 18 147.59 18
10 12469 6.72 4.68 14.04 10 144.43 6

Table 3 summarizes the number of (erroneous) orientation snap changes that we identified
in our session data. ∆θi is the computed change in orientation between two Vicon samples
and mean ∆θ is the average change in orientation over all samples for a given session. A
generally decreasing mean ∆θi between Sessions 1-6 and Sessions 7-10 reflects decreasing
battery charge, and the sudden increase in mean ∆θ between Sessions 6 and 7 reflects a
battery change between these two sessions. For each session, σ is the standard deviation in
the distribution of ∆θ and 3σ represents the ∆θ distribution’s 99% confidence interval. We
assume that orientation changes that substantially exceed 3σ are orientation snap changes.
For each session, error events quantifies the number of orientation snap changes, mean error
∆θ quantifies error event average ∆θ, and samples affected quantifies the number of samples
that require correction via interpolation
1 — The bulk of the samples affected in Session 3 occur when the Wb comes to a halt
in a corner in such a way that most markers are occluded. 22 samples occur where Wb
orientation is effectively unchanging
2 — One sample in Session 5 exceeded the 3σ criteria but only by a small margin, i.e.
∆θi = 19.543264, leaving an odd number of events which is explained by another anomaly
at samples 33, 34, and 35 where the Wb first flipped one way, then another, and then back
to correct orientation
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between the tracking model and the subject, which requires estimation of center offset

and compensation in Vicon data.

Vicon captures a pose by fitting the tracking model to the physical robot. The

tracking model is defined in the model frame, so the pose recorded by Vicon rep-

resents a transform from the model frame to the capture frame. If the center of the

physical robot is not colocated with the model frame center, the position recorded

by Vicon will contain an offset error that is oriented with respect to the model ori-

entation in the capture frame. We establish a clear rotational map between physical

robot and tracking model by aligning the Wb using the stand; however, manual cen-

ter assignment establishes an arbitrary point as the “center” of the model frame, and

this center is the translational basis for transformations between model frame and

capture frame. There is an unknown offset between the arbitrary model frame center

and the physical robot center which must be computed.

We use cm to represent the manually assigned center, c0 to represent the true

physical center of the Wb, and u to represent the offset between the two centers, all

defined in the model frame. We define u by the formula:

u = c0 − cm (4)

We use V to represent the set of all Vicon samples, p to represent a pose of the Wb

in the capture frame where p ∈ V , x to represent the translational transform of p,

and R to represent the rotational transform defined by p. We also use ı̂, ̂, and k̂ to

represent unit vectors directed along the x-, y-, and z-axes of the global coordinate

frame.

We compute u to correct displacement error in all Vicon samples using two meth-

ods (for cross-checking): ()compute the closest point to all marker points recorded in

model registration, () minimize the Wb height error across all Vicon samples. We
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found that these two approaches, described in detail below, produced nearly identical

solutions.

Iterative center estimation

We found that Vicon tracking of dome markers is less accurate than tracking of

traditional spherical markers. Due to error in dome marker tracking, the positions

of dome markers assigned to the tracking model are estimates, which means that

marker positions recorded in the Vicon skeleton file (vsk) data contain error. The

vsk defines model space and the relative positions in model space of all marker

centroids registered to the model. Regardless, we used vsk data to estimate u.

By definition, any point on the surface of a sphere is equidistant to the center

of the sphere. The Wb shell appears spherical, so markers on the shell should be

equidistant to the center of the Wb. The manually assigned center cm defines the

position of the model frame origin, so the marker positions stored in the vsk are

relative to cm. We verified that cm is not equidistant from all marker positions,

which supports our hypothesis that a manually designated center contributes error

to captured poses.

We estimated c0 as cm and then repeatedly perturbed the estimated center until

it was approximately equidistant from all marker positions. Due to the inaccuracy

of marker measurements and the number of markers, we believe that an analytic

solution is infeasible and an iterative solution is practical.

Our iterative process consists of () assigning u = cm and storing both the dis-

tances from u to all markers and the sum of all distances; () perturbing u; and ()

storing the updated distance information retaining the new u (only if both the sum of

distances decreases and the distance to every marker decreases). Using this approach

and after 107 iterations, we computed:

u ≈ [−1.067, 3.499, 2.313]× 10−3m (5)
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Height error minimization

In order to validate the offset we computed using the iterative center estimate

method, we computed the offset using a second approach as well. We know that the

Wb is a rigid ball of known radius, and we confirmed through review of video of all

sessions that the Wb never leaves contact with the enclosure surface. Based on this

information, we formulated a least squares optimization approach to minimize the

error in the capture frame’s vertical dimension (z-axis) for all Vicon samples.

Because the Wb maintains contact with the enclosure surface and the Wb is a

rigid sphere, for all Wb poses in V , the actual vertical position z of the geometric

center of the Wb must equal the Wb radius r. We assume that the offset u between

true physical center and manually assigned center in the model frame accounts for the

error between z and r. Given perfect pose measurements, for all p ∈ V the following

holds true:

(x+ Ru)Tk̂ = r (6)

We find u by minimizing the error, ε, across all samples in V :

ε =
1

2

n∑
i=1

(
(x+ Ru)Tk̂ − r

)2
(7)

Using this approach with a data set consisting of all samples from all sessions, we

computed:

u ≈ [−1.267, 3.365, 1.907]× 10−3m (8)

We believe that the minimized height error method produces a more accurate

estimate than the iterative center estimate method. The minimization method derived

a solution from more than 120,000 samples while the iterative method derived a

solution from a total of 8 samples. We are satisfied that the two methods produce

the same answer to one significant digit given the noise in the Vicon data and

the difference between the number of samples used to arrive at each result, but we
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believe the minimization method’s solution is more accurate because it is derived

from several orders of magnitude more samples. We therefore use the u computed by

the minimization method to correct all samples.

5.5.6 Estimating Weazelball Actuator State

The Wb motor is a low cost, unregulated DC motor that operates at variable

velocity depending on the state of the Wb. Interactions between motor, battery, shell,

gearing, and environment result in variable motor performance and motor assembly

rotational velocity which complicates development of a detailed motor model. When

the shell collides with the edges of the enclosure, the inertia of the motor assembly

may contribute an impulse that causes the motor assembly to increase rotational

velocity for a short duration, and when the shell comes to a stop, the motor assembly

rotational velocity will decrease due to friction between the shell and surface plane.

When the Wb has sufficient forward momentum and is rolling freely across the center

of the enclosure, the motor assembly rotational velocity will increase until the Wb

reaches maximum forward velocity.

For modeling, we assume that the motor operates at constant velocity; therefore,

the motor assembly has constant rotational velocity and the actuator has constant

rotational frequency. We provide the actuator rotational frequency as a parameter

to control the simulated actuator. While the real actuator has variable frequency,

we can assume that once the actuator has reached maximum frequency, the motor

assembly rotational velocity remains constant. Constant rotational velocity allows us

to interpolate actuator state – position and velocity – for Vicon samples where the

actuator is operating at maximum frequency.

We estimated the actuator rotational frequency from video analysis as 2.333Hz;

however, we carried out a more in depth assessment of the signal data and determined

that 2.5Hz is a more reliable estimate for sessions 1 through 6, refer to Figure 30.
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Interpolated Weazelball Actuator Frequency

(a) Actuator frequency was derived from video data; however, many samples are
unobservable due to gaps in observation. Non-zero values are based on observations and
zero values are the result of non-observations. (b) We culled samples where the actuator
frequency is zero from further consideration. (c) The samples are not necessarily adjacent,
so a scatter plot more appropriately represents actuator freqency for observed samples.
An ellipse in this scatter plot and subsequent scatter plots highlights the 2.5Hz actuator
frequency. (d) A histogram of the session 1 samples shows a small number of outliers
greater than the maximum frequency which can be attributed to impulses generated by
collisions with the enclosure. (e) For the sessions before the battery change, the maximum
frequency is consistent. (f) After the battery change, actuator frequency is inconsistent
with the actuator frequency preceding the battery change.
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Because the signal circuit cannot always be observed when signals are generated due

to gaps, there are a significant number of Vicon samples where actuator frequency

is indeterminate. Figure 30(a) shows interpolated actuator frequency from the first

Vicon session between visible signals where zero values indicate indeterminate fre-

quency. We excluded from further investigation any samples with indeterminate

frequency and illustrate the remaining samples in Figure 30(b). If we exclude out-

liers beyond the apparent maximum actuator frequency, we measure the maximum

frequency to be 2.5Hz, see Figures 30(c) and (d). The measured maximum actuator

frequency is consistent in all sessions preceding the battery change, see Figure 30(e);

however, following the battery change, the actuator frequency had higher variability

and the maximum frequency is not consistent with the maximum frequency exhib-

ited in sessions preceding the battery change, see Figure 30(f). Because the voltage

supplied to the motor is unregulated, the battery change alters motor performance

until the battery has discharged somewhat.

5.6 Validating Weazelball Simulation Through Support Vector Regres-

sion

.

Figure 31 plots the trajectory of a situated Wb in the xy-plane and shows that a

situated Wb tends to roll forward when unobstructed and may undergo wild direction

changes upon collision with an obstacle. We simulated the Wb with realistic inertias,

realistic coefficients of friction, and a realistic motor velocity. Figures 32 and 33

illustrate that small variations in a model can significantly alter behavior, implying

that the model must be carefully constructed to obtain accuracy. Our goal in modeling

and simulating the Wb has been to investigate divergences between simulated and

real behaviors in state-of-the-art robotics simulators when using reasonably accurate

system parameters.

Validation of a Wb simulation poses two problems: () the state space is multi-

100



Figure 31: Trajectory from a Situated Weazelball

120s of data collected from a real Weazelball shows the robot tends to oscillate around
a relatively straight trajectory when rolling unobstructed and may change directions
wildly after colliding with an obstacle. Arrows indicate direction at 1s time intervals, a
solid circle indicates starting position, and a dashed circle indicates ending position.
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-1σ No Offset +1σ

+2σ +3σ +4σ

Figure 32: Offset Varied Weazelball Trajectories Simulated by ODE

These plots depict simulation of the Wb using the ODE dynamic engine in Gazebo.
Each plot represents the Wb trajectory produced when the bob center-of-mass is
displaced by a factor of a small amount σ as part of our validation process and reflects
300s of simulation time at an integration step size of 10µs. The bob center-of-mass was
displaced both inward and outward with respect to the bob’s modeled center-of-mass and
the Wb central axis. For each simulation, all parameters are held constant except for the
positioning of the bob center-of-mass.
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+2σ +3σ +4σ

Figure 33: Offset Varied Weazelball Trajectories Simulated by DART

These plots depict simulation of the Wb using the DART dynamic engine in Gazebo.
Each plot represents the Wb trajectory produced when the bob center-of-mass is
displaced by a factor of a small amount σ as part of our validation process and reflects
300s of simulation time at an integration step size of 10µs. The bob center-of-mass was
displaced both inward and outward with respect to the bob’s modeled center-of-mass and
the Wb central axis. For each simulation, all parameters are held constant except for the
positioning of the bob center-of-mass.
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dimensional with mixed units (meters and radians), thereby precluding simple metrics

for comparison; () upon impacts with its environment, the Wb evinces chaotic be-

havior, as predicted by Ivanov [36]. The nonholonomicity of the Wb, its primitive

control system, and the intermittent chaotic behavior cause predictions to diverge

from telemetry data given sufficient (usually small) time. The remainder of this

section describes our approach to address these problems. The general idea is to

() generate telemetry data for the Wb under multiple values of one parameter of

the mechanism’s model, () train a regression model on the mapping from pairs of

state data (from virtual sample i to virtual sample i+ 1), and () test the regression

mechanism on the data collected from Vicon.

5.6.1 Simulating the Weazelball in Gazebo

We simulated the Wb using Gazebo 4.0. Gazebo is robotics focused and allows

simulation using a variety of dynamics engines with minimal or no changes to models

and controllers. We hoped that Gazebo would provide a dynamics-engine-agnostic

interface; however, the interfaces and integration of all dynamics engines are not

equally supported. We will discuss this issue in further detail below.

Simulation of the Wb requires a model of the motor. We used a derivative con-

troller (“D”-control) with an arbitrarily selected gain and the observed actuator fre-

quency (2.5Hz, as described in Section 5.5) as the control input.

Simulating the Wb also requires selecting an integration time step. This param-

eter has a large impact on simulation accuracy and running time. As the time step

decreases, initial value problem solution accuracy increases which is accompanied by

an increase in real computation time. For this reason, we prefer to take the largest

step size possible and the smallest step size needed. To find an optimal step size,

we ran a number of simulations where we reduced the fixed step size in each simula-

tion until the behavior did not change appreciably (i.e., the behavior “converged”).
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Figure 34 shows the first 10s of simulation time for ODE and DART at various

integration time steps with an actuator frequency of 2.333Hz. ODE appears to ex-

hibit some convergence for a short period of time at smaller integration time steps;

however, as the number of collisions increases, the state diverges as expected [36] as

even small differences in position and orientation at the time of collision result in

diverging states [10]. DART did not appear to converge regardless of step size.

ODE DART

Figure 34: Simulated Weazelball Trajectories with Varied Integration Step

These trajectories were generated over 10s of simulation time using the labeled simulator.
The integration time step was varied for each simulation while all other parameters were
held constant. All simulations begin with the Wb positioned with the same state. Red
lines map trajectories for 1ms time step, green lines map trajectories for 100µs time step,
and blue lines map trajectories for 10µs time step. ODE appears to demonstrate
convergence until several collisions have occurred while DART is unpredictable regardless
of collisions.

5.6.2 Generating Training Data from Weazelball Simulation

We used the signed distance of the bob center-of-mass (CoM) as the mechanism

parameter described at the beginning of this section. We varied this distance by

adjusting the offset positively (i.e., the bob CoM was moved toward its “inner” joint)
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and negatively (i.e., the bob CoM was moved away from its joint). We represent

the constant offset displacement as σ and use multiples of σ across the simulation

experiments. After the model parameter was altered, we simulated the Wb and

recorded the resulting telemetry data.

We carried out this process for two simulators that demonstrated plausible results:

ODE and DART (other simulators supported by Gazebo were either too slow or

exhibited gross artifacts). Once the regression model was trained using the data set

from simulation, the model was made to predict the bob CoM offsets on the Vicon

data set. These CoM offset predictions generated by the regression model thus provide

a quantitative measure of how accurate a simulator is at generating “realistic” data.

Because we did not observe absolute convergence as step size is reduced for either

simulator, we simulated the Wb using the smallest step size for which we could still

simulate minutes of virtual time, 10µs. We carried out nine simulations per simulator,

corresponding to four positive CoM offsets, four negative offsets, and one zero offset

(a total of 18 simulations for the two simulators) for 5 minutes of simulation time.

The four offsets in each direction were equally spaced, and the last offset was set such

that the CoM of the bob would still lie well within the spherical shell. It is clear from

Figures 32 and 33 that the spacings permitted significant variation in behavior.

We downsampled the simulation data to 100Hz to match the Vicon sampling rate

before training. Because our simulation motor model assumes constant velocity, we

generated all simulation training data using a 2.5Hz actuator frequency and we filtered

the Vicon data by removing any samples not operating at 2.5Hz before predicting

the offset. The 2.5Hz frequency corresponds to the Vicon samples where the Wb

had reached maximum velocity: we observed the Wb actuator velocity occasionally

increase or decrease after impacts with the walls of its enclosure. Since we assume

that the actuator velocity is constant, we discarded Vicon samples that corresponded

to telemetry data where the actuator did not operate at maximum velocity.
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We built three simulation data sets from 30, 120, and 300 seconds of the simulated

data illustrated in Figures 32 and 33, so that we could discern when added data

produced no further prediction error decrease: both running the simulations and

training the regression model require considerable computational time. Each training

sample consists of a feature vector of two states (a total of thirty values), where

each state comprises fifteen state values — shell position (3 values), shell orientation

quaternion (4 values), shell linear velocity (3 values), shell angular velocity (3 values),

actuator position, and actuator velocity — and a single output: the offset parameter

corresponding to that feature. As already noted, simulation is carried out with an

integration step size of 10µs but the training data is drawn from a subset of the

simulation data that is generated by downsampling the simulation data to a frequency

of 100Hz. Each training sample is therefore a concatenation of the i state and the

i + 1 state from the downsampled 100Hz subset. The test set was taken from the

Vicon data, collected and processed as described in the preceding sections of this

chapter; state velocity values were approximated using a first-order finite difference

between samples.

5.6.3 Training the Regression Model

We used the radial-basis function (RBF) based support vector regression (SVR)

[13] library in scikit-learn to train the regression model. We chose RBF kernels over

linear kernels because preliminary tests using the latter on small data sets resulted

in significantly longer training time and greater error than with the RBF kernels.

These trends (i.e., longer training times and larger errors) continued as more data

was added, so we used the RBF kernels for the remainder of our experiments.

The scikit-learn RBF kernel implementation uses three primary parameters, C,

gamma, and epsilon. gamma determines the amount of influence individual training

samples exert on the classifier and C is used to specify the requisite accuracy for

classification. The authors of the library conducted a search for the “best parameters”
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of gamma and C4 and found that 0.1 and 1, respectively, generally were the best settings

of these parameters. When searching for parameters via cross-validation, we initially

provided a larger range of values but found that the scikit team’s “best parameters”

invariably yielded the lowest training error. The epsilon parameter constrains the

region where no penalty is associated in the training loss function. epsilon had the

most significant impact on training error, and we found that an epsilon value of

10−6 minimized training error regardless of the number of samples in the training set.

Each simulation data set was randomly shuffled and split to produce training sets

and validation sets. We held back 10% of each training data set for cross-validation;

this training/cross-validation split yielded our lowest training set error.

The trained regression model should predict a zero offset for all test set data, so the

predicted offset produces a metric of the inaccuracy of the simulation. We measure

regression error, ε, for a sample by computing the error between the predicted offset

and the actual offset for the sample:

ε = |σpredicted − σactual| (9)

5.6.4 Analysis of Regression

Figures 35, 36, and 37 plot the results of the regression analysis for each simulation

data set and Table 4 summarizes the mean error for all regression models. Error is

expressed in the plots and accompanying table as a percentage relative to one CoM

offset, i.e. 3.312mm; however, restating the error in terms of an absolute measurement

provides perspective on the magnitude of the error. For 30s of ODE training data,

the 4.43% training error is equivalent to 0.1467mm and the 7.26% testing error is

equivalent to 0.24mm; for 30s of DART training data, the 4.46% training error is

equivalent to 0.1477mm and the 17.28% testing error is equivalent to 0.5723mm.

One can draw interesting conclusions from both Figures 35, 36, and 37 and Table 4.

4http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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From the latter, we can glean that adding beyond 30s of data does not impact the

results significantly. In fact, increasing the data by a factor of 10 yields only a 10%

performance improvement in training error; error on prediction performance actually

increases with more data for the two constructed regression models.

Are these results sensible from a qualitative perspective? In other words, does

ODE actually appear to simulate the Wb better than DART? The answer is “yes”,

at least looking at Figures 32 and 33, where DART trajectories (at zero CoM off-

set) show significant changes in direction in all simulations whereas ODE trajectories

(again, at CoM offset) become hard to distinguish from real trajectories. The valida-

tion approach does appear to give a sense of which simulation is generating the more

realistic data.

Nevertheless, we cannot conclude that ODE is a more accurate dynamics sim-

ulator than DART. Gazebo has a long development history with ODE while the

interface between Gazebo 4.0 and DART was relatively new. As an example of the

better support that ODE enjoyed, we note that the friction coefficients specified in

the Gazebo models were not assigned to the DART bodies by Gazebo; DART

computations relied instead on a default internal value. We modified the DART

source to use the same value specified in the Gazebo models. While we carried out a

close inspection of the friction parameters, DART might have been poorly supported

in other ways.

5.6.5 Conclusions and Future Weazelball Work

We presented our approach for collecting data from and validating multi-rigid

body simulations of a wild, robotic system. We provide a repository of our work5.

Our repository includes all raw Vicon and video data collected; the Solidworks

models and inertial estimates; Gazebo controllers developed to validate, synchronize,

and interpolate; all signal and synchronization data; and all training data, implemen-

5https://www.github.com/PositronicsLab/wild-robot
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Table 4: Regression error on training and testing data sets

ODE DART
t Samples εtrain εtest εtrain εtest

30s 25000 4.43% 7.26% 4.46% 17.28%
120s 100000 4.08% 7.67% 4.20% 22.43%
300s 250000 4.04% 7.75% 4.07% 27.22%

Table 4 summarizes the error generated by our regression models for both ODE and DART
training sets relative to one offset of the bob CoM, i.e. 3.312mm. t represents the duration
in seconds of simulation data used for training, Samples represents the number of samples
contained in a training set, and εtrain is the training error and εtest is the testing error of
the regression model for the given simulator.

tations, and support scripts necessary to recreate our validation process.

Our validation approach demonstrates one methodology that might be used to

compare simulations with in situ data: see whether regression models trained by

simulating a system from various initial conditions and a particular parameterization

can predict the parameterization of the true system on real telemetry data. This

approach is particularly useful when simulations are deterministic and do not attempt

to introduce any noise, which should permit a sufficiently complex regression model

to “learn” the simulation. This approach accommodates the high dimensional state

spaces common in robotics, allows measurement of a simulator’s sensitivity to the

variation of a specific parameter, and can help establish a fair process for comparing

the accuracy of simulations.

We report a caveat with our approach that lies with the model parameter selection:

if the model parameter being varied (bob center-of-mass offset in our approach) is sus-

ceptible to ambiguity—a pair of states can be generated under multiple parameters—

then such samples can adversely impact the model training. We also expect that

one can identify that scenario, though, as training error will plateau regardless of the

number of samples, the training time, or the regression model complexity. We believe

this phenomenon is responsible for the performance plateaus observed in Table 4.
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ODE DART

Figure 35: Regression Analysis for 30s of Weazelball Simulation

These plots report the error and predicted offset for each regression model when trained
by 30s of simulation data. The regression analysis for ODE appears in the left column
and DART appears in the right column. In the training and testing error scatter plots,
the black line represents one offset σ of the bob CoM and the red line represents the mean
error µ. The histograms are centered on a green vertical line that represents the modeled
and expected bob CoM and neighboring vertical black lines mark each inward and
outward offset.
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ODE DART

Figure 36: Regression Analysis for 120s of Weazelball Simulation

These plots report the error and predicted offset for each regression model when trained
by 120s of simulation data. The regression analysis for ODE appears in the left column
and DART appears in the right column. In the training and testing error scatter plots,
the black line represents one offset σ of the bob CoM and the red line represents the mean
error µ. The histograms are centered on a green vertical line that represents the modeled
and expected bob CoM and neighboring vertical black lines mark each inward and
outward offset.
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ODE DART

Figure 37: Regression Analysis for 300s of Weazelball Simulation

These plots report the error and predicted offset for each regression model when trained
by 300s of simulation data. The regression analysis for ODE appears in the left column
and DART appears in the right column. In the training and testing error scatter plots,
the black line represents one offset σ of the bob CoM and the red line represents the mean
error µ. The histograms are centered on a green vertical line that represents the modeled
and expected bob CoM and neighboring vertical black lines mark each inward and
outward offset.
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We will continue to explore the potential and limitations of our validation ap-

proach and to look at other possible ways to validate simulations of the Wb against

the data generated by this study. However, an important future contribution is con-

tinued advocacy and promotion of the use of this and other real data sets to validate

robotics simulators. Testing and demonstrating the predictive capabilities of robotics

simulators will require data from a large number of relevant experiments and we

believe that Wb data along with data from other real world contact and friction

experiments will advance the state of art in robotics simulation.

114



References

References

[1] J. H. Anderson and M. S. Mollison. Bringing theory into practice: A userspace

library for multicore real-time scheduling. In Proc. IEEE Real-Time and Embed-

ded Technology and Applications Symp. (RTAS), pages 283–292, 2013.

[2] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact

problems with friction as solvable linear complementarity problems. Nonlinear

Dynamics, 14:231–247, 1997.

[3] T. Aswathanarayana, D. Niehaus, V. Subramonian, and C. Gill. Design and

performance of configurable endsystem scheduling mechanisms. In Proc. IEEE

Real-Time and Embedded Technology and Applications Symp. (RTAS), pages 32–

43, 2005.

[4] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical

systems. Comp. Math. Appl. Mech. Engr., 1:1–16, 1972.

[5] L. Bobadilla, F. Martinez, E. Gobst, K. Gossman, and S. M. Lavalle. Controlling

wild mobile robots using virtual gates and discrete transitions. In American

Control Conference(ACC), pages 743–749, Montréal, Canada, June 2012.
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